بررسی قابلیت‌های تکنولوژیکی و خصوصیات زیست فعال پلی ساکارید ساقه تیفا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و صنایع غذایی،دانشکده علوم زیستی،دانشگاه آزاد واحد تهران شمال،تهران،ایران

2 گروه علوم و صنایع غذایی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران

3 عضو هیئت علمی دانشگاه آزاد اسلامی واحداهواز

4 گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه تربیت مدرس

5 گروه علوم و صنایع غذایى، دانشگاه علوم کشاورزى و منابع طبیعى خوزستان

چکیده

< p>این تحقیق با هدف جداسازی پلی ساکارید ساقه تیفا و بررسی خصوصیات تکنولوژیک، فعالیت ضد اکسایشی و ضد باکتریایی آن انجام شد. در این راستا پلی ساکارید ساقه تیفا با استفاده از روش استخراج قلیایی-اولتراسونیک تحت شرایط نسبت آب به ماده خام mL/g 25 ، غلظت سدیم هیدروکسیدM 5/1 و زمانmin 40 استخراج گردید. در این بررسی نتایج پراکندگی نور پویا نشان داد که متوسط اندازه ذرات و پتانسیل زتا به ترتیب nm 282 و mV 52/21- بود. بر اساس نتایج نسبت هاسنر و قابلیت جریان پلی ساکارید تیفا به ترتیب 02/0±16/1 و 01/0±99/13% بود. این ترکیب ظرفیت بالایی برای نگهداری آب (15/0±28/9 %)، جذب روغن(14/0±37/4%)، فعالیت امولسیونی (%100) و پایداری امولسیون(%96) نشان داد. همچنین نتایج بررسی فعالیت ضد اکسایشی بیانگر توانایی مطلوب پلی‌ساکارید تیفا ( mg/mL47/0= 〖IC〗_(50 )) برای مهار رادیکال‌های آزاد ABTS بود. نتایج بررسی فعالیت ضد باکتریایی به روش انتشار دیسک در آگار نشان داد که این ترکیب دارای تاثیر معنی داری بر مهار رشد باکتری های منتخب در این مطالعه نبود. با توجه به نتایج به دست آمده این پلی ساکارید می‌تواند به عنوان یک منبع طبیعی آنتی اکسیدان و ترکیبی مناسب برای استفاده های تکنولوژیکی معرفی گردد.

چکیده تصویری

بررسی قابلیت‌های تکنولوژیکی و خصوصیات زیست فعال پلی ساکارید ساقه تیفا

تازه های تحقیق

  • با استفاده از روش استخراج قلیایی-اولتراسونیک پلی ساکارید از ساقه تیفا دمینجنسیس جدا شد.
  • قابلیت­های تکنولوژیکی پلی ساکارید استخراح شده مورد بررسی قرار گرفت.
  • خصوصیات فیزیکی پلی ساکارید استخراج شده شامل اندیس های جریان و پیوستگی مورد بررسی قرار گرفت.
  • علیرغم فعالیت آنتی اکسیدانی مطلوب پلی ساکارید استخراج شده خصوصیت ضد باکتریایی علیه باکتریهای مورد مطالعه نشان نداد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of technological capabilities and bioactive properties of Typha stem polysaccharide

نویسندگان [English]

  • Reihaneh Sorourian 1
  • Amir Eghbal Khajehrahimi 2
  • Mohammad Hossein Azizi 4
  • Mohammad Hojjati 5
1 Department of Food Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, Iran
2 Department of Food Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, Iran.
4 Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
5 Department of Food Science and Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Ahvaz, Iran
چکیده [English]

< p >The aim of this study was to isolate polysaccharides from the Typha stem to evaluate its technological specifications and antibacterial and antioxidant activities. To isolate this polysaccharide, we used the alkaline- ultrasonic extraction method in this state; water to raw material ratio is 25 mL/g, sodium hydroxide concentration 1.5 M for 40 min. The dynamic light scattering results illustrated that the average particle size and zeta potential were 282 nm and -21.52 mV, respectively. Based on the results, the Hausner''s ratio and Carr’s Index were 1.16±0.02 and %13.99±0.01, respectively. This polysaccharide showed a high capacity for water holding (9.28±0.15), oil holding (4.37±0.14), Emulsifying (100%) and emulsion stability (96%). Also, the results of this study showed that the extracted polysaccharide has a high ability to scavenge free radicals ABTS (IC50=0.47 mg/mL). Examination of antibacterial activity by disk agar diffusion method showed that this compound did not have a significant effect, on inhibiting the growth of selected bacteria in this study. Therefore, this polysaccharide can be introduced as a natural source of antioxidant and an appropriate composition for technological uses.

کلیدواژه‌ها [English]

  • Polysaccharides
  • Typha stem
  • Technological Capability
 [1]       El-Ameir, Y. A. (2013). Spatial distribution and nutritive value of two Typha species in Egypt. Egypt J Bot., 53(1), 91–113.
[2]        Akhtar, N., Hameed, M., & Ahmad, R. (2016). Structural and functional aspects of ionic relation in roots of Typha domingensis pers. ecotypes under salt stress. Pak J Bot., 48(6), 2195–2203.
[3]        Rao, M. R. K., Saranya, Y., Divya, D., & Linn, A. C. (2016). Preliminary Phytochemical Analysis of Typha domingensis Rhizome Aqueous Extracts. Int. J. Pharm. Sci. Rev. Res., 37(1), 30–32.
[4]       Naddaf, H., Esmaeilzadeh, S., Pourmehdi Borujeni, M.,& Sabiza, S. (2016) .Histopathologic evaluation of Typha angustifolia pollen extract on experimental full thickness wound healing in mice. Iran Vet J., 54,98-108. [In Persian].
[5]        Zhao, J. L., Zhang, M., & Zhou, H. L. (2019). Microwave-assisted extraction, purification, partial characterization, and bioactivity of polysaccharides from Panax ginseng. Molecules., 24(8), 1605.
[6]        Mazarei, F., Jooyandeh, H., Noshad, M., & Hojjati, M. (2017). Polysaccharide of caper ( Capparis spinosa L.) Leaf : Extraction optimization , antioxidant potential and antimicrobial activity. Int. J. Biol. Macromol.,  95, 224–231.
[7]        Tadayoni, M., Sheikh-Zeinoddin, M., & Soleimanian-Zad, S. (2015). Isolation of bioactive polysaccharide from acorn and evaluation of its functional properties. Int J Biol Macromol., 72, 179–184.
[8]        Sorourian, R., Khajehrahimi, A. E., Tadayoni, M., Azizi, M. H., & Hojjati, M. (2020). Ultrasound-assisted extraction of polysaccharides from Typha domingensis: Structural characterization and functional properties. Int J Biol Macromol., 160, 758–768.
[9]        Saravana, P. S., Cho, Y. J., Park, Y. B., Woo, H. C., & Chun, B. S. (2016). Structural, antioxidant, and emulsifying activities of fucoidan from Saccharina japonica using pressurized liquid extraction. Carbohydr. Polym., 153, 518–525.
[10]      Han, Q. H., Liu, W., Li, H. Y., He, J. L., Guo, H., Lin, S., Zhao, L., Chen,H., Liu, Y.W., Wu, D.T., Li,S.Q., & Qin, W. (2019). Extraction optimization, physicochemical characteristics, and antioxidant activities of polysaccharides from kiwifruit (Actinidia chinensis Planch.). Molecules., 24(3),461.
[11]      Cui, F. J., Qian, L. S., Sun, W. J., Zhang, J. S., Yang, Y., Li, N., Zhuang, H.N., & Wu, D. (2018). Ultrasound-Assisted Extraction of Polysaccharides from Volvariella volvacea: Process Optimization and Structural Characterization. Molecules., 23(7), 1706.
[12]      Wang, L., Cheng, L., Liu, F., Li, T., Yu, Z., Xu, Y., & Yang, Y. (2018). Optimization of ultrasound-assisted extraction and structural characterization of the polysaccharide from pumpkin (Cucurbita moschata) seeds. Molecules., 23(5), 1207.
[14]      Wei, Y., Cai, Z., Wu, M., Guo, Y., Tao, R., Li, R., Wang, P., Ma, A., & Zhang, H. (2020). Food Hydrocolloids Comparative studies on the stabilization of pea protein dispersions by using various polysaccharides. foodhyd, 98(July 2019), 105233.
 [15]     Pawar, H. A., Gavasane, A. J., & Choudhary, P. D. (2018). Extraction of polysaccharide from fruits of Cordia dichotoma G. Forst using acid precipitation method and its physicochemical characterization. Int. J. Biol. Macromol., 115, 871–875.
[16]   Tan, C.; Wei, H.; Zhao, X.; Xu, C.; & Peng, J. Effects of Dietary Fibers with High Water-Binding Capacity and Swelling Capacity on Gastrointestinal Functions, Food Intake and Body   Weight in Male Rats. Food Nutr. Res. 61 (1).
[17]      Wang, L., Zhang, B., Xiao, J., Huang, Q., Li, C., & Fu, X. (2018). Physicochemical, functional, and biological properties of water-soluble polysaccharides from Rosa roxburghii Tratt fruit. Food Chem., 249(January), 127–135
[18]      Mutaillifu, P., Bobakulov, K., Abuduwaili, A., Huojiaaihemaiti, H., Nuerxiati, R., Aisa, H. A., & Yili, A. (2020). Structural characterization and antioxidant activities of a water soluble polysaccharide isolated from Glycyrrhiza glabra. Int. J. Biol. Macromol., 144, 751–759
[19]      Liu, W., Liu, Y., Zhu, R., Yu, J., Lu, W., Pan, C., Yao, W., & Gao, X. (2016). Structure characterization, chemical and enzymatic degradation, and chain conformation of an acidic polysaccharide from Lycium barbarum L. Carbohydr. Polym., 147, 114–124.
[20]      Sarmento, B., Ribeiro, A., Veiga, F., & Ferreira, D. (2006). Development and characterization of new insulin containing polysaccharide nanoparticles. Colloids Surfaces B Biointerfaces., 53(2), 193–202
[21]      Hosseini, S.M.H., Emam-Djomeh, Z., Razavi, S.H., Moosavi-Movahedi, A.A., Saboury, A.A., Mohammadifar, M.A., Farahnaky, A., Atri, M.S., & Van Der Meeren, P., (2013). Complex coacervation of β-lactoglobulin - κ-carrageenan aqueous mixtures as affected by polysaccharide sonication. Food Chem., 141(1), 215–222.
[22]    Nakamura, A., Fujii, N., Tobe, J., Adachi, N., & Hirotsuka, M. (2012). Characterization   and functional properties of soybean high-molecular-mass polysaccharide complex. Food Hydrocoll., 29(1), 75–84.
[23]    Hojjati, M.; & Beirami-Serizkani, F.(2020). Structural Characterization, Antioxidant and Antibacterial Activities of a Novel Water Soluble Polysaccharide from Cordia Myxa Fruits. J. Food Meas. Charact. 1-9.
[24]    Akrami, M., Ghanbarzadeh, B., Purzafar, F., Mortazavi, A., Dinarvand, R., & Dehghannya J.(2016). Gum arabic-caseinate nanocomplexes bearing β-carotene (2): Studying of particle sizedistribution, zeta potential, morphology and encapsulation efficiency. JRIFST.,4(26), 763-778. [In Persian].
[25]    Khoshmanzar, M., Ghanbarzadeh, B., Hamishekar, H., Sowti, M., & Rezayi Mokarram R.(2012). Investigation of effective parameters on particle size, zeta potential and steady rheological properties of colloidal system based on carrageenan-caseinate nanoparticles. JRIFST.,1(4), 252-272. [In Persian].
[26]      Jahromi, M., Niakousari, M., Sharifi, A., & Kalantari, M.(2015). Investigating the physical and chemical properties of grape and date juice powders and dried fig extract. JIFT.,7(3), 85-94. [In Persian].
[27]      Carr, R. L. (1965). Evaluating flow properties of solids. Chem. Eng., 18, 163–168.
[28]      Jinapong, N., Suphantharika, M., & Jamnong, P. (2008). Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. J. Food Eng., 84(2), 194–205.
[29]   Mateos-Aparicio, I., Redondo-Cuenca, A., & Villanueva-Su. M. J. (2010). Isolation and
characterisation of cell wall polysaccharides from legume by-products : Okara ( soymilk residue ), pea pod and broad bean pod. Food Chem., 122(1), 339–345.
 
 [30]     Rashid, F., Hussain, S., & Ahmed, Z. (2018). Extraction purification and characterization of galactomannan from fenugreek for industrial utilization. Carbohydr. Polym., 180, 88–95.
[31]      Yuan, Y., Xu, X., Jing, C., Zou, P., Zhang, C., & Li, Y. (2018). Microwave assisted hydrothermal extraction of polysaccharides from Ulva prolifera: Functional properties and bioactivities. Carbohydr. Polym., 181(August 2017), 902–910.
[32]      Trabelsi, I., Ktari, N., Triki, M., Bkhairia, I., Ben Slima, S., Sassi Aydi, S., Aydi, S., Abdeslam, A., & Ben Salah, R. (2018). Physicochemical, techno-functional, and antioxidant properties of a novel bacterial exopolysaccharide in cooked beef sausage. Int. J. Biol. Macromol., 111, 11–18.
[33]      Chaharlang, M., Eskandari, M., & Eskandari, F. (2018). Optimization of polysaccharide extraction from Cucurbitamoschata and evaluation of physicochemical properties. JFST.,78, 263-274. [In Persian].
[34]    Ognyanov, M.; Georgiev, Y.; Petkova, N.; Ivanov, I.; Vasileva, I.; & Kratchanova, M.  (2018). Isolation and Characterization of Pectic Polysaccharide Fraction from in Vitro Suspension Culture of Fumaria Officinalis L. Int. J. Polym. Sci. 17-30.
[35]   Akbari-Alavijeh, S.; Soleimanian-Zad, S.; Sheikh-Zeinoddin, M.; & Hashmi, S.(2018) Pistachio Hull Water-Soluble Polysaccharides as a Novel Prebiotic Agent. Int. J. Biol. Macromol., 107, 808–816.
[36]      Bayar, N., Kriaa, M., & Kammoun, R. (2016). Extraction and characterization of three polysaccharides extracted from Opuntia ficus indica cladodes. Int. J. Biol. Macromol., 92, 441–450.
[37]      Zhong, Q., Wei, B., Wang, S., Ke, S., Chen, J., Zhang, H., & Wang, H. (2019). The antioxidant activity of polysaccharides derived from marine organisms: An overview. Marine Drugs,. 17(12) 674.
[ 38]     Hajji, M., Hamdi, M., Sellimi, S., Ksouda, G., Laouer, H., Li, S., & Nasri, M. (2019). Structural characterization, antioxidant and antibacterial activities of a novel polysaccharide from Periploca laevigata root barks. Carbohydr. Polym., 206, 380–388.
 [39]     Yang, X., Wu, Y., Zhang, C., Fu, S., Zhang, J., & Fu, C. (2019). Extraction, structural characterization, and immunoregulatory effect of a polysaccharide fraction from Radix Aconiti Lateralis Preparata (Fuzi). Int. J. Biol. Macromol.,143, 314-324.
 [40]     Azmi, A. F. M. N., Mustafa, S., Hashim, D. M., & Manap, Y. A. (2012). Prebiotic activity of polysaccharides extracted from Gigantochloa Levis (buluh beting) shoots. Molecules., 17(2), 1635–1651.
[41]     Jiang, L., Wang, W., Wen, P., Shen, M., Li, H., Ren, Y., Xiao, Y., Song,Q., Chen ,Y.,  Yu, Q., & Xie, J. (2020). Two water-soluble polysaccharides from mung bean skin: Physicochemical characterization, antioxidant and antibacterial activities. Food Hydrocoll.,100, 105412.