[1] Thuwapanichayanan, R., Prachayawarakorn, S., Soponronnarit, S. (2014). Heat and moisture transport behaviour and quality of chopped garlic undergoing different drying methods. Journal of Food Engineering., 136, 34–41.
[2] Tao, Y., Zhang, J., Jiang, S., Xu, Y., Show, P.L., Han, Y., Ye, X., Ye, M. (2018). Contacting ultrasound enhanced hot-air convective drying of garlic slices: Mass transfer modeling and quality evaluation. Journal of Food Engineering., 235, 79-88.
[3] Hnin, K.K., Zhang, M., Li, Z., Wang, B. (2019). Comparison of quality aspects and energy consumption of restructured taro and potato chips under three drying methods. Journal of Process Engineering., 42(7), e13249.
[4] Xu, Y., Xiao, Y., Lagnika, C., Song, J., Li, D., Liu, C., Jiang, N., Zhang, M., and Duan X (2019). A comparative study of drying methods on physical characteristics, nutritional properties and antioxidant capacity of broccoli. Drying Technology.
https://doi.org/10.1080/07373937.2019.1656642 (In Press)
[5] Onwude, D.I., Hashim, N., Abdan, K., Janius, R., Chen, G. (2018). Modelling the mid-infrared drying of sweet potato: kinetics, mass and heat transfer parameters, and energy consumption. Heat and Mass Transfer., 54, 2917–2933
[6] Doymaz, I., Ozdemir, O. (2014). Effect of air temperature, slice thickness and pretreatment on drying and rehydration of tomato. International Journal of Food Science and Technology., 49, 558–564.
[7] Wang, Y., Li, X., Chen, X., Li, B., Mao, X., Miao, J., Zhao, C., Huang, L., Gao, W. (2018). Effects of hot air and microwave-assisted drying on drying kinetics, physicochemical properties, and energy consumption of chrysanthemum.
Chemical Engineering and Processing,
129, 84-94.
[8] Abbaspour-Gilandeh, Y., Kaveh, M., Jahanbakhshi, A. (2019).The effect of microwave and convective dryer with ultrasound pre-treatment on drying and quality properties of walnut kernel. Journal of Food Processing and Preservation., 43(11), e14178.
[9] Zhou, X., Ramaswamy, H., Qua, Y., Xua, R., Wang, S. (2019). Combined radio frequency-vacuum and hot air drying of kiwifruits: Effect on drying uniformity, energy efficiency and product quality. Innovative Food Science and Emerging Technologies., 56, 102182.
[10] Shewale, S.R., Rajoriya, D., Hebbar, H. U. (2019). Low humidity air drying of apple slices: Effect of EMR pretreatment on mass transfer parameters, energy efficiency and quality. Innovative Food Science and Emerging Technologies., 55, 1–10.
[11] Mierzwa, D., Szadzińska, J., Pawłowski, A., Pashminehazar R., Kharaghani, A. (2019). Nonstationary convective drying of raspberries, assisted by microwaves and ultrasound.
Drying Technology, 37(8), 988-1001.
[12] Kaveh, M., Jahanbakhshi, A., Abbaspour-Gilandeh, Y., Taghinezhad, E., Moghimi, M. B. F. (2018). The effect of ultrasound pre-treatment on quality, drying, and thermodynamic attributes of almond kernel under convective dryer using ANNs and ANFIS network. Journal of Food Process Engineering., 41(7), e12868.
[13] Doymaz, I. (2017). Drying kinetics, rehydration and colour characteristics of convective hot‑air drying of carrot slices. Heat and Mass Transfer. 53 (1), 25-35.
[14] Dehghannya, J., Kadkhodaei, S., Heshmati, M.K., Ghanbarzadeh, B. (2019). Ultrasound-assisted intensification of a hybrid intermittent microwave - hot air drying process of potato: Quality aspects and energy consumption.
Ultrasonics., 96, 104-122.
[15] Bozkir, H., Ergun, A. R., Tekgul, Y., Baysal, T. (2019) Ultrasound as pretreatment for drying garlic slices in microwave and convective dryer. Food Science and Biotechnology. 28, 247-354
[16] Mariz, I.F.A., Pais, L.S., Barreiro, F.F., Silva, J.A.C. (2005). Equilibrium moisture content and heat of desorption of garlic.
[17] Jafari, H., Kalantari, D., Azadbakht, M. (2017). Semi-industrial continuous band microwave dryer for energy and exergy analyses, mathematical modeling of paddy drying and its qualitative. Energy., 138, 1016-1029
[18] Doymaz, I., Gol, E. (2011). Convective drying characteristics of eggplant slices. Journal of Food Process Engineering., 34, 1234–1252.
[19] Ashtiani, S.H.M., Sturm B., Nasirahmadi, A. (2018). Effects of hot-air and hybrid hot air-microwave drying on drying kinetics and textural quality of nectarine slices. Heat and Mass Transfer., 54(4), 915-927.
[20] Kouhila, M., Moussaoui, H., Lamsyehe, H., Tagnamas, Z., Bahammou, Y., Idlimam, A., Lamharrar, A. (2020). Drying characteristics and kinetics solar drying of Mediterranean mussel (mytilus galloprovincilis) type under forced convection. Renewable Energy., 147, 833-844.
[21] Younis, M., Abdelkarim, D., El-Abdein, A. Z. (2018). Kinetics and mathematical modeling of infrared thin-layer drying of garlic slices. Saudi Journal of Biological Sciences., 25, 332–338.
[22] İlter, I., Akyıl S., Devseren, E., Okut, D., Koç, M., Ertekin, F.K. (2015). Microwave and hot air drying of garlic puree: drying kinetics and quality characteristics. Heat and Mass Transfer., 54(7), 2101–2112
[23] Hazervazifeh, A., Nikbakht, A.M., Moghaddam, P.A. (2016). Novel hybridized drying methods for processing of apple fruit: Energy conservation approach. Energy., 103, 679-687.
[24] Demiray, E., Seker, A., Tulek, Y. (2016). Drying kinetics of onion (Allium cepa L.) slices with convective and microwave drying. Heat and Mass Transfer. 53(5), 1817- 1827.
[25] Ghanbarian, D., Torki-Harchegani, M., Sadeghi, M., Pirbalouti, A.G., (2020). Ultrasonically improved convective drying of peppermint leaves: Influence on the process time and energetic indices. Renewable Energy., 153, 67-73.
[26] Sharma, G.P. Prasad, S., Chahar, V.K. (2009). Moisture transport in garlic cloves undergoing microwave-convective drying. Food and Bioproducts Processing., 87, 11–16.
[27] Nguyen, M.H., Price, W.E. (2007) Air-drying of banana: influence of experimental parameters, slab thickness, banana maturity and harvesting season. Journal of Food Engieering., 79, 200–207
[28] Azimi-Nejadian H., Hoseini SS (2019) Study the effect of microwave power and slices thickness on drying characteristics of potato. Heat and Mass Transfer., 55, 2921–2930
[29] Kaveh, M., Chayjan, R.A., Taghinezhad, E., Sharabiani, V.R., Motevali. A (2020). Evaluation of specific energy consumption and GHG emissions for different drying methods (Case study: Pistacia Atlantica). Journal of Cleaner Production. 59: 120963
[30] Aral, S., Bese, A.V. (2016). Convective drying of hawthorn fruit (Crataegus spp.): Effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity. Food Chemistry., 210, 577–584.
[31] Calín-Sánchez, A., Figiel, A., Wojdyło, A., Szarycz, M., Carbonell-Barrachina, A.A. (2014). Drying of garlic slices using convective pre-drying and vacuum-microwave finishing drying: kinetics, energy consumption, and quality studies. Food and Bioprocess Technology., 7(2), 398-408.
[32] Nguyen, T. K, Mondor, M., Ratti, C. (2018). Shrinkage of cellular food during air drying. Journal of Food Engineering. 230, 8-17
[33] Parthasarathi, S., Anandharamakrishnan, C. (2014). Modeling of shrinkage, rehydration and textural changes for food structural analysis: a review. Journal of Food Process Engineering. 37(2), 199-210
[34] Dehghannya, J., Bozorghi, S., Heshmati, M.K. (2018). Low temperature hot air drying of potato cubes subjected to osmotic dehydration and intermittent microwave: drying kinetics, energy consumption and product quality indexes. Heat and Mass Transfer. 54(4), 929-954.