خشک‌کردن لیموترش با روش هوای گرم تحت تاثیر پیش‌تیمار فراصوت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، گروه مهندسی مکانیک بیوسیستم، دانشگاه محقق اردبیلی، اردبیل، ایران.

2 دانشجوی دکترا، گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.

3 دانشیار، گروه مهندسی مکانیک بیوسیستم، دانشگاه محقق اردبیلی، اردبیل، ایران.

چکیده

هدف از این پژوهش، بدست آوردن خواص ترمودینامیکی خشک‌کردن لیموترش تحت تاثیر پیش تیمار فراصوت در یک خشک‌کن هوای گرم می‌باشد. فرآیند خشک‌کردن در سه سطح دمایی (40، 55 و 70 درجه سلسیوس)، یک سطح سرعت هوای ورودی 1 متر بر ثانیه و چهار سطح زمان پیش تیمار فراصوت (شاهد، 10، 20 و 40 دقیقه) صورت گرفت. از 14 مدل ریاضی خشک‌کردن جهت پیش‌بینی نسبت رطوبت لیموترش استفاده شد. نتایج نشان داد با افزایش دمای هوای ورودی و زمان اعمال توان فراصوت، زمان خشک‌کردن کاهش پیدا کرد. بهترین مدل برای پیش‌بینی خشک‌کردن لیموترش مدل میدیلی و همکاران انتخاب شد. استفاده از پیش‌تیمار فراصوت در دماهای مختلف منجر به افزایش قابل توجهی در مقدار ضریب پخش موثر رطوبت از 11-10×04/5 تا 10-10×00/2 مترمربع برثانیه شد. انرژی فعال‌سازی برای لیموترش در محدوده‌ی 93/34 تا 97/42 کیلو ژول بر مول بدست آمد. همچنین مقدار انرژی مصرفی ویژه برای خشک‌کردن لیموترش (39/47 تا 46/240 کیلو وات ساعت بر کیلوگرم) ثبت شد.

چکیده تصویری

خشک‌کردن لیموترش با روش هوای گرم تحت تاثیر پیش‌تیمار فراصوت

تازه های تحقیق

  • خواص مهندسی لیمو ترش در فرایند خشک­کردن در خشک­کن هوای گرم با پیش­تیمار فراصوت مورد بررسی قرار گرفت.
  • اثر دمای هوا و پیش­تیمار فراصوت بر روی انرژی مصرفی ویژه، انرژی فعال­سازی و ضریب پخش رطوبت موثر بررسی شد.
  • افزایش زمان اعمال پیش تیمار فراصوت و دمای هوا باعث افزایش ضریب پخش رطوبت موثر شد.
  • کمترین مقدار انرژی مصرفی ویژه در بالاترین دمای هوا و زمان اعمال پیش­تیمار فراصوت اتفاق افتاد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Sour lemon drying by hot air drying under ultrasonic pre-treatment

نویسندگان [English]

  • Mohammad Kaveh 1
  • Ahmad Jahanbakhshi 2
  • Ezzatollah Askari Asli-Ardeh 3
  • Kamal Imanian 1
1 PhD student, Department of Biosystems Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.
2 PhD student, Department of Biosystems Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.
3 Associate Professor, Department of Biosystems Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.
چکیده [English]

The purpose of this research is to obtain the thermodynamic properties of lemon drying under the influence of ultrasonic pre-treatment in a hot air dryer. Experiments were performed using a convection dryer with ultrasound pretreatment in 40, 55 and 70 °C air temperature, 1 m/s air velocity and duration of ultrasonic pre-treatment of 0 min (for control sample), 10, 20 and 40 min. The drying kinetic of the lemon was estimated by 14 mathematical models. The results showed that the drying time decreased with increasing the air temperature and the time of applying ultrasound. The best model to predict the drying of lemons was selected by Midilli et al. The use of ultrasonic pre-treatment at different temperatures resulted in a significant increase in the effective moisture diffusivity ( ) from 5.04×10-11 to 2.00×10-10 m2/s. Activation energy ( ) of the lemon was obtained between 34.93 and 42.97 kJ/mol. The values of specific energy consumption ( ) were 47.39 to 240.46 kWh/kg.

کلیدواژه‌ها [English]

  • Lemon
  • Drying
  • Ultrasound
  • Effective moisture diffusivity
  • specific energy consumption
[1] Torki-Harchegani, M., Ghasemi-Varnamkhasti, M., Ghanbarian, D., Sadeghi, M., Tohidi, M. (2016). Dehydration characteristics and mathematical modelling of lemon slices drying undergoing oven treatment. Heat Mass Transfer., 52, 281-289.
[2] Lorente, J., Vegara, S., Martí, N., Ibarz, A., Coll, L., Hernández, J., Saura, D. (2014). Chemical guide parameters for Spanish lemon (Citrus limon (L.) Burm.) juices. Food Chem., 162, 186–191
[3] Coşkun, S., Doymaz, İ., Tunçkal, C., Erdoğan, S. (2017). Investigation of drying kinetics of tomato slices dried by using a closed loop heat pump dryer. Heat Mass Transfer.53, 1863-1871.
[4] Siucińska, K., Konopacka, D. (2014). Application of ultrasound to modify and improve dried fruit and vegetable tissue – a review. Drying Technol., 32, 1360–1368.
[5] Fan, K., Zhang, M., Mujumdar, A. S. (2017). Application of airborne ultrasound in the convective drying of fruits and vegetables: A review. Ultrason Sonochem., 39, 47-57.
[6] Arvanitoyannis, I. S., Kotsanopoulos, K. V., Savva, A. G. (2017). Use of ultrasounds in the food industry–Methods and effects on quality, safety, and organoleptic characteristics of foods: A review. Crit Rev Food Sci Nut., 57, 109-128.
 [7] Rodríguez, Ó., Gomes, W., Rodrigues, S., Fernandes, F. A. (2017b). Effect of acoustically assisted treatments on vitamins, antioxidant activity, organic acids and drying kinetics of pineapple. Ultrason Sonochem.35, 92-102.
[8] Kowalski, S. J., Pawłowski, A., Szadzińska, J., Łechtańska, J., Stasiak, M. (2016). High power airborne ultrasound assist in combined drying of raspberries. Innov Food Sci Emerg Technol., 34, 225–233.
[9] Azoubel, P. M., Baima, M. D. A. M., da Rocha Amorim, M., Oliveira, S. S. B. (2010). Effect of ultrasound on banana cv Pacovan drying kinetics. J Food Eng.97, 194-198.
[10] Dujmić, F., Brnčić, M., Karlović, S., Bosiljkov, T., Ježek, D., Tripalo, B., Mofardin, I. (2013). Ultrasound- assisted infrared drying pear slice: textural issues. J Food Process Eng.36, 397-406.
[11] Kowalski, S. J., Pawłowski, A. (2015). Intensification of apple drying due to ultrasound enhancement. J Food Eng., 156, 1-9
[12] Santacatalina, J. V., Contreras, M., Simal, S., Cárcel, J. A., Garcia-Perez, J. V. (2016). Impact of applied ultrasonic power on the low temperature drying of apple. Ultrason Sonochem.28, 100-109.
[13] Wang, J., Law, C.L., Nema, P. K., Zhao, J.H., Liu, Z.L., Deng, L.Z., Gao, Z.J., Xiao, H.W. (2018). Pulsed vacuum drying enhances drying kinetics and quality of lemon slice. J Food Eng., 224, 129-138.
[14] Sadeghi, M., Kesbi OM., Mireei S.A. (2012). Mass transfer characteristics during convective, microwave and combined microwave–convective drying of lemon slices. J Sci Food Agric., 93, 471-478.
[15] یوسفی، ع.؛ قاسمیان، ن.؛ سالاری، ا. (1396) مدلسازى سینتیک خشک­کردن برش­هاى لیموترش به روش تابش مادون قرمز با استفاده از شبکه­هاى عصبى GMDH هیبریدى. فصلنامه فناوری­های نوین غذایی، جلد 5، شماره 1، ص 35-60.
 [16] Torki Harchegan, M., Sadeghi, M., Ghanbarian, D., Moheb, A. (2016). Characteristics of whole lemons in a convective hot air dryer. Iran J Chem Chem Eng., 35, 65-73.
[17] M’hiri, N. Ghali, R. Ben Nasr, I. & Boudhrioua, N. (2018). Effect of different drying processes on functional properties of industrial lemon byproduct. Process Saf Environ Protec., 116, 450- 460.
[18] Kesbi, O.M., Sadeghi, M., Mireei, S.A. (2016). Quality assessment and modeling of microwave- convective drying of lemon slices. Eng Agri, Environ Food., 9, 216- 223.
[19] Darvishi, H., Khoshtaghaza, M. H., Minaei, S. (2014). Drying kinetics and colour change of lemon slices. Int. Agrophys., 28, 1-6.
[20] AOAC, (1965). Official methods of analysis of the Association of Official Agricultural Chemists (Vol. 9). The Association.
[21] Jahanbakhshi, A. (2018). Determine some engineering properties of snake melon (cucumis melo var. flexuosus). Agri Eng Inl: CIGR J.20, 171-176.
[22] Jahanbakhshi, A., Abbaspour‐Gilandeh, Y., Gundoshmian, T. M. (2018). Determination of physical and mechanical properties of carrot in order to reduce waste during harvesting and post‐harvesting. Food Sci Nut., 6, 1898-1903.
 [23] Torki-Harchegani, M., Ghanbarian, D., Ghasemi Pirbalouti, A., Sadeghi, M. (2016). Dehydration behaviour, mathematical modelling, energy efficiency and essential oil yield of peppermint leaves undergoing microwave and hot air treatments. Renew Sustain Energy Rev., 58, 407–418.
[24] Onwude, D. I., Hashim, N., Janius, R. B., Nawi, N. M., Abdan, K. (2016). Modeling the thin‐layer drying of fruits and vegetables: A review. Compr rev food sci food saf.15, 599-618.
 [25] Lakshmi, D.V.N., Muthukumar, P., Layek, A., Nayak, P.K. (2018).  Drying kinetics and quality analysis of black turmeric (Curcuma caesia) drying in a mixed mode forced convection solar dryer integrated with thermal energy storage.  Renew Energy., 120, 23-33.
[26] Kaveh, M., Jahanbakhshi, A., Abbaspour‐Gilandeh, Y., Taghinezhad, E., Moghimi, M. B. F. (2018). The effect of ultrasound pre‐treatment on quality, drying, and thermodynamic attributes of almond kernel under convective dryer using ANNs and ANFIS network. J Food Process Eng.41, e12868.
[27] Nowacka, M., Wiktor, A., Sledz, M., Jurek, N., Witrowa-Rajchert, D. (2012). Drying of ultrasound pretreated apple and its selected physical properties. J Food Eng., 113, 427–433.
[28] Kaveh, M, Abbaspour-Gilandeh, Y., Amir Chayjan, R., Taghinezhad, E.,  Mohammadigol, R. (2018) Mass transfer, physical, and mechanical characteristics of terebinth fruit (Pistacia atlantica L.) under convective infrared microwave drying. Heat Mass Transfer., 54, 1879-1899.
[29] Rad, S.J., Kaveh, M.,  Sharabiani, V.R., Taghinezhad, E. (2018). Fuzzy logic, artificial neural network and mathematical model for prediction of white mulberry drying kinetics. Heat Mass Transfer., 54, 3361-3374.
[30] Kayran, S., Doymaz, I. (2017). Determination of drying kinetics and physicochemical characterization of apricot pomace in hot-air dryer. J Therm Anal Calorim., 130, 1163-1170.
[31] Deepika S. Sutar P. P. (2018). Combining osmotic–steam blanching with infrared–microwave–hot air drying: Production of dried lemon (Citrus limon L.) slices and enzyme inactivation. Drying Technol.36, 1719-1737.
[32] Motevali, A., Jafari, H., Hashemi, J. (2018). Effect of IR intensity and air temperature on exergy and energy at hybrid infrared-hot air dryer. Chem. Ind. Chem. Eng. Q., 24, 31-42.
[33] Beigi, M., Torki-Harchegani, M., Tohidi, M. (2017). Experimental and ANN modeling investigations of energy traits for rough rice drying. Energy., 141, 2196- 2205.
[34] Tohidi, M., Sadeghi, M., Torki-Harchegani, M. (2017). Energy and quality aspects for fixed deep bed drying of paddy. Renew Sustain Energy Rev., 70, 519–528.
[35] Onwude, D. I., Hashim, N., Abdan, K., Janius, R., Chen, G. (2018). Investigating the influence of novel drying methods on sweet potato (Ipomoea batatas L.): Kinetics, energy consumption, color, and microstructure. J Food Process Eng., 41, e12686.
[36] Abdoli, B., Zare, D., Jafari, A., Chen, G. (2018). Evaluation of the air-borne ultrasound on
fluidized bed drying of shelled corn: Effectiveness, grain quality, and energy consumption. Drying Technol., 36, 1749-1766.
[37] Liu, Y., Sun, Y., Miao, S., Li F., Luo, D. (2015). Drying characteristics of ultrasound assisted hot air drying of Flos Lonicerae. J Food Sci Technol., 52, 4955-4964.
[38] Fijalkowska, A., Nowacka, M., Wiktor, A., Sledz, M., Witrowa- Rajchert, D. (2016). Ultrasound as a pretreatment method to improve drying kinetics and sensory properties of dried apple. J Food Process Eng., 39, 256-265.
[39] Tao, Y., Wang, P., Wang, Y., Kadam SU., Han Y, Wang J, Zhou, J. (2016). Power ultrasound as a pretreatment to convective drying of mulberry (Morus alba L.) leaves: Impact on drying kinetics and selected quality properties. Ultrason Sonochem., 31, 310–318.
[40] Clemente, G., Sanjuan, N., Carcel, JA., Mulet, A. (2014). Influence of temperature, air velocity, and ultrasound application on drying kinetics of grape seeds. Drying Technol., 32, 68–76.
[41] Zielinska, M., Markowski, M. (2018). The effect of microwave-vacuum, ultrasonication and freezing on mass transfer kinetics and diffusivity during osmotic dehydration of cranberries. Drying Technol., 36, 1158-1169.
[42] Tao, Y., Zhang, J., Jiang, S., Xu, Y., Show, P., Han, Y. Ye, X., Ye, M. (2018). Contacting ultrasound enhanced hot-air convective drying of garlic slices: Mass transfer modeling and quality evaluation. J Food Eng., 235, 79- 88.
[43] Gamboa-Santos, J., Montilla, A., Cárcel, J. A., Villamiel, M., Garcia-Perez J.V. (2014). Air-borne ultrasound application in the convective drying of strawberry. J Food Eng., 128, 132–139.
[44] Motevali, A., Minaei, S., Banakar, A., Ghobadian, B., Khoshtaghaza, M. H. (2014). Comparison of energy parameters in various dryers. Energy Convers Manage., 87, 711–725.
[45] Sledz, M., Wiktor, A., Rybak, K., Nowacka, M., Witrowa-Rajchert, D. (2016). The impact of ultrasound and steam blanching pre-treatments on the drying kinetics, energy consumption and selected properties of parsly leaves. Applied Acoustics., 103, 148-156.