خشک کردن پاششی عصاره‌ استویا: ارزیابی ویژگی‌های فیزیکی شیمیایی، عملکردی و میکروساختار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد شیمی موادغذایی، گروه علوم و صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 دانشیار گروه علوم و صنایع غذایی دانشگاه علوم کشاورزی و منابع طبیعی گرگان

3 دانش آموخته دکتری شیمی مواد غذایی، گروه علوم و صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

4 کارشناس ارشد، گروه علوم و صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

چکیده

در این پژوهش اثر نوع ماده‌ی دیواره (صمغ عربی، مالتودکسترین و کنسانتره‌ی پروتئین آب پنیر (WPC) ) در غلظت‌های مختلف (وزنی/ حجمی 10،20،30) بر بازده‌ی تولید پودر، مقدار رطوبت، فعالیت آبی، نم‌پذیری، حلالیت، قابلیت جذب رطوبت، چگالی توده، ضربه و واقعی، شاخص‌های رنگی و جریان‌پذیری پودر‌های استویا بررسی شد. هم‌چنین ریز‌ساختار پودر‌های خشک شده به روش پاششی با میکروسکوپ الکترونی ارزیابی شد. نتایج نشان دادند که افزایش نسبت مالتودکسترین منجر به افزایش بازده تولید پودر شد. با افزایش غلظت حامل‌ها مقدار فعالیت آبی، چگالی‌ توده، ضربه و واقعی نمونه‌ها کاهش یافت، این ویژگی‌ها به ترتیب در محدوده 33/0-08/0، g/mL 59/0-34/0، g/mL64/0-39/0، g/mL61/1-28/ 1 متغیر بودند. کمترین شاخص‌های جریان‌پذیری (نسبت هاسنر، شاخص تراکم پذیری و زاویه ریپوز) با نمونه‌ WPC 10، حاصل شد. بیشترین میزان رطوبت (03/5 %)، زمان نم‌پذیری (08/51، ثانیه)، حلالیت (08/94 %) و جذب رطوبت (66/30 %) به ترتیب مربوط به نمونه-های WPC 10، WPC 30، MD 10، GA 10 بود. ارزیابی ریزساختار نمونه‌ها نشان داد که نمونه‌های حاوی WPC، دارای ذراتی با اندازه‌ی بزرگتر و سطوحی با چروکیدگی عمیق‌تر بودند.

چکیده تصویری

خشک کردن پاششی عصاره‌ استویا: ارزیابی ویژگی‌های فیزیکی شیمیایی، عملکردی و میکروساختار

تازه های تحقیق

  • خشک‌کردن پاششی عصاره استویا با استفاده از حامل­های مختلف (صمغ عربی، مالتودکسترین و کنسانتره پروتئین آب پنیر) انجام گرفت.
  • بازده تولید پودرهای استویا تحت تاثیر نوع حامل قرار گرفت.
  • بیش‌ترین انحلال‌پذیری پودرها با استفاده از غلظت 10 درصد مالتو دکسترین حاصل شد.
  • نمونه‌های حاوی WPC دارای اندازه بزرگ‌تری نسبت به نمونه‌های حاصل از صمغ عربی و مالتودکسترین بودند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Spray drying of stevia extract: evaluation of physicochemical, functional and microstructural properties

نویسندگان [English]

  • Shima Kaveh 1
  • Alireza Sadeghi Mhoonak 2
  • Khashayar Sarabandi 3
  • Zeinab Graeely 4
1 M.sc student of food chemistry, Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 Associate Professor, Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
3 Ph.D, Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
4 M.sc of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
چکیده [English]

In this study, The effect of wall material (Arabic gum, maltodextrin and whey protein concentrate (WPC)) in different concentrations (10,20,30 w/v) on powder production yield, moisture content, Water activity, wettability, solubility, hygroscopicity, bulk, tapped and true density, colorimetric and flowability characteristics of stevia powders were investigated. Also, the microstructure of spray dried powder was evaluated by scanning electron microscopy. The results showed that increasing the maltodextrin ratio led to increasing in powder production yield. By increasing the carriers concentration, the amount of water activity, bulk, tapped, true density of samples, decreased, these properties were in the range of 0.08-0.33, 0.34-0.59 g / mL, 0.39 – 0.64 g/mL, 1.28 - 1.61 g/mL, respectively. The minimum flowability indexes (Hausner ratio, compressibility, angle of repose) obtained in 10 WPC sample. The maximum moisture content (5.03%), time of wettability (51.08 seconds), solubility (94.08%) and hygroscopicity (30.66%) were related to 10 WPC, 30 WPC, 10 MD, 10 GA samples, respectively. The evaluation of samples microstructure showed that the samples containing WPC had larger particles and deeper wrinkling surfaces.

کلیدواژه‌ها [English]

  • stevia
  • Spray drying
  • wall material
  • Physicochemical properties
  • scanning electron microscopy
[1] Agarwal, V., Kochhar, A., Sachdeva, R. (2010). Sensory and nutritional evaluation of sweet milk products prepared using stevia powder for diabetics. Stud. Ethno-Medicine., 4, 9-13.
 [2] Nehir El, S., Simsek, S. (2012). Food technological applications for optimal nutrition: an overview of opportunities for the food industry. Compr. Rev. Food Sci. Food Saf., 11, 2-12.
 [3] European Commission (2011). Commission Regulation (EU) No 1131/2011 of 11 November 2011 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council with regard to steviol glycosides. Off. J. Eur. Communities., 295, 205–211.
[4] Prakash, I., DuBois, G. E., Clos, J. F., Wilkens, K. L., Fosdick, L. E. (2008). Development of rebiana, a natural, non-caloric sweetener. Food Chem. Toxicol., 46, S75-S82.
[5] Curry, L. L., Roberts, A. (2008). Subchronic toxicity of rebaudioside A. Food Chem. Toxicol., 46, S11-S20.
 [6] Oliveira, W. P., Bott, R. F., Souza, C. R. (2006). Manufacture of standardized dried extracts from medicinal Brazilian plants. Drying Technol., 24, 523-533.
[7] Desobry, S. A., Netto, F. M., Labuza, T. P. (1997). Comparison of spray‐drying, drum‐drying and freeze‐drying for β‐carotene encapsulation and preservation. J. Food Sci., 62, 1158-1162.
 [8] Phisut, N. (2012). Spray drying technique of fruit juice powder: some factors influencing the properties of product. Int. Food Res. J., 19, 1297-1306.
[9] Kaushik, R., Narayanan, P., Vasudevan, V., Muthukumaran, G., Usha, A. (2010). Nutrient composition of cultivated stevia leaves and the influence of polyphenols and plant pigments on sensory and antioxidant properties of leaf extracts. J. Food Sci. Technol., 47, 27-33.
[10] Charve, J., Reineccius, G. A. (2009). Encapsulation performance of proteins and traditional materials for spray dried flavors. J. Agric. Food Chem., 57, 2486-2492.
[11] Fernandes, L. P., Turatti, I. C., Lopes, N. P., Ferreira, J. C., Candido, R. C., Oliveira, W. P. (2008). Volatile retention and antifungal properties of spray-dried microparticles of Lippia sidoides essential oil. Drying Technol., 26, 1534-1542.
[12] Wang, W., Jiang, Y., Zhou, W. (2013). Characteristics of soy sauce powders spray-dried using dairy whey proteins and maltodextrins as drying aids. J. Food Eng., 119, 724-730.
[13] Shi, Q., Fang, Z., Bhandari, B. (2013). Effect of addition of whey protein isolate on spray-drying behavior of honey with maltodextrin as a carrier material. Drying Technol., 31, 1681-1692.
[14] سرابندی، خ.؛ صادقی ماهونک، ع. (1395) اثر دمای هوای ورودی و میزان مالتودکسترین بر ویژگی­های فیزیکی شیمیایی پودر شیره­ی خرما خشک شده به روش پاششی، فصلنامه­ی فناوری­های نوین غذایی، جلد 14. شماره 4، ص 1-15.
[15] Santhalakshmy, S., Bosco, S. J. D., Francis, S., Sabeena, M. (2015). Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice powder. Powder Technol., 274, 37-43.
[16] Subtil, S. F., Rocha-Selmi, G. A., Thomazini, M., Trindade, M. A., Netto, F. M., Favaro-Trindade, C. S. (2014). Effect of spray drying on the sensory and physical properties of hydrolysed casein using gum arabic as the carrier. J. Food Sci. Technol., 51, 2014-2021.
[17] Rascón, M. P., Beristain, C. I., García, H. S., Salgado, M. A. (2011). Carotenoid retention and storage stability of spray-dried encapsulated paprika oleoresin using gum Arabic and soy protein isolate as wall materials. LWT-Food Sci. Technol., 44, 549-557.
 [18] Sarabandi, K., Peighambardoust, S. H., Mahoonak, A. S., Samaei, S. P. (2017). Effect of carrier types and compositions on the production yield, microstructure and physical characteristics of spray dried sour cherry juice concentrate. J. Food Meas. Charact., 11, 1602-1612.
[19] Carneiro, H. C., Tonon, R. V., Grosso, C. R., Hubinger, M. D. (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. J. Food Eng., 115, 443-451.
 [20] de Barros Fernandes, R. V., Borges, S. V., Botrel, D. A. (2014). Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydr. Polym., 101, 524-532.
[21] Botrel, D. A., de Barros Fernandes, R. V., Borges, S. V., Yoshida, M. I. (2014). Influence of wall matrix systems on the properties of spray-dried microparticles containing fish oil. Food Res. Int., 62, 344-352.
[22] Rodea-González, D. A., Cruz-Olivares, J., Román-Guerrero, A., Rodríguez-Huezo, M. E., Vernon-Carter, E. J., Pérez-Alonso, C. (2012). Spray-dried encapsulation of chia essential oil (Salvia hispanica L.) in whey protein concentrate-polysaccharide matrices. J. Food Eng., 111, 102-109.
 [23] Goula, A. M., Adamopoulos, K. G. (2010). A new technique for spray drying orange juice concentrate. Innovative Food Sci. Emerging Technol., 11, 342-351.
[24] Cano-Chauca, M., Stringheta, P. C., Ramos, A. M., Cal-Vidal, J. (2005). Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Sci. Emerging Technol., 6, 420-428.
[25] Rao, G. N. (2014). Antioxidant Activity of Stevia (Stevia rebaudianaL.) Leaf Powder and A Commercial Stevioside Powder. J. Food Pharm. Sci., 2, 32-38.
[26] Bhandari, B. R., Datta, N., Howes, T. (1997). Problems associated with spray drying of sugar-rich foods. Drying Technol., 15, 671-684.
[27] Shrestha, A. K., Ua-Arak, T., Adhikari, B. P., Howes, T., Bhandari, B. R. (2007). Glass transition behavior of spray dried orange juice powder measured by differential scanning calorimetry (DSC) and thermal mechanical compression test (TMCT). Int. J. Food Prop., 10, 661-673.
[28] Deshpande, H. W., Poshadri, A. (2011). Physical and sensory characteristics of extruded snacks prepared from Foxtail millet based composite flours. Int. Food Res. J., 18, 751-756.
[29] Jinapong, N., Suphantharika, M., Jamnong, P. (2008). Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. J. Food Eng., 84, 194-205.
[30] Cano-Chauca, M., Stringheta, P. C., Ramos, A. M., & Cal-Vidal, J. (2005). Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Sci. Emerging Technol., 6, 420-428.
[31] Fuchs, M., Turchiuli, C., Bohin, M., Cuvelier, M. E., Ordonnaud, C., Peyrat-Maillard, M. N., Dumoulin, E. (2006). Encapsulation of oil in powder using spray drying and fluidised bed agglomeration. J. Food Eng., 75, 27-35.
 [32] Bhusari, S. N., Muzaffar, K., Kumar, P. (2014). Effect of carrier agents on physical and microstructural properties of spray dried tamarind pulp powder. Powder Technol., 266, 354-364.
 [33] Holm, K., Wendin, K., Hermansson, A. M. (2009). Sweetness and texture perceptions in structured gelatin gels with embedded sugar rich domains. Food Hydrocoll., 23, 2388-2393.
[34] سرابندی، خ.؛ صادقی ماهونک، ع. (1397) تاثیر فرایند خشک کردن پاششی بر ویژگی­های فیزیکی شیمیایی، عملکردی و میکروساختار پودرهای شیره­ی خرما خشک شده به روش پاششی، مجله­ی علوم و صنایع غذایی ایران، جلد 74، شماره 15، ص 155-168.
[35] Buffo, R. A., Probst, K., Zehentbauer, G., Luo, Z., Reineccius, G. A. (2002). Effects of agglomeration on the properties of spray‐dried encapsulated flavours. Flavour Fragrance J., 17, 292-299.
[36] Fazaeli, M., Emam-Djomeh, Z., Ashtari, A. K., Omid, M. (2012). Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food Bioprod. Process., 90, 667-675.
[37] Keogh, K., Murray, C., Kelly, J., O’Kennedy, B. (2004). Effect of the particle size of spray-dried milk powder on some properties of chocolate. Lait., 84, 375-384.
[38] Lumay, G., Boschini, F., Traina, K., Bontempi, S., Remy, J. C., Cloots, R., Vandewalle, N. (2012). Measuring the flowing properties of powders and grains. Powder Technol., 224, 19-27.
[39] El-Samahy, S. K., El-Hady, E. A., Habiba, R. A., Moussa-Ayoub, T. E. (2007). Some functional, chemical, and sensory characteristics of cactus pear rice-based extrudates. J PACD., 9, 136-147.
[40] Goula, A. M., & Adamopoulos, K. G. (2005). Spray drying of tomato pulp in dehumidified air: II. The effect on powder properties. J. Food Eng., 66, 35-42.
[41] دزیانی، ع.؛ جعفری، س. م.؛ ضیایی فر، ا.؛ قربانی، م.؛ صادقی ماهونک، ع. بهینه سازی فرآیند خشک کردن پاششی رب گوجه فرنگی با استفاده از روش سطح پاسخ. (1396) فصلنامه­ی علوم و صنایع غذایی، جلد 72. شماره 14، ص 47-65.
[42] Tonon, R. V., Brabet, C., Hubinger, M. D. (2008). Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying. 
J. Food Eng., 88, 411-418.
[43] Daza, L. D., Fujita, A., Fávaro-Trindade, C. S., Rodrigues-Ract, J. N., Granato, D., Genovese, M. I. (2016). Effect of spray drying conditions on the physical properties of Cagaita (Eugenia dysenterica DC.) fruit extracts. Food Bioprod. Process., 97, 20-29.
[44] Bazaria, B., Kumar, P. (2016). Effect of whey protein concentrate as drying aid and drying parameters on physicochemical and functional properties of spray dried beetroot juice concentrate. Food Biosci., 14, 21-27.
 [45] Fäldt, P., Bergenståhl, B. (1994). The surface composition of spray-dried protein—lactose powders. Colloids Surf. A., 90, 183-190.