[1] Heydari, A., I. Alemzadeh, and M. Vossoughi. (2013). Influence of glycerol and clay contents on biodegradability of corn starch nanocomposites. Int. J. Eng., Trans. B: App., 27203-214.
[2]Gonçalves de Moura, I., A. Vasconcelos de Sá, A.S. Lemos Machado Abreu, and A.V. Alves Machado, Bioplastics from agro-wastes for food packaging applications. 2017, Academic Press. 223-263.
[3]Battisti, R., N. Fronza, Á. Vargas Júnior, S.M.d. Silveira, M.S.P. Damas, and M.G.N. Quadri. (2017). Gelatin-coated paper with antimicrobial and antioxidant effect for beef packaging. Food Pack. Shelf Life, 11, 115-124.
[4]Nafchi, A.M., A.K. Alias, S. Mahmud, and M. Robal. (2012). Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide. J. Food Eng., 113(4), 511-519.
[5]Nouri, L. and A.M. Nafchi. (2014). Antibacterial, mechanical, and barrier properties of sago starch film incorporated with betel leaves extract. Int. J. Biol. Macromol., 66, 254-259.
[6]Nafchi, A.M., M. Moradpour, M. Saeidi, and A.K. Alias. (2014). Effects of nanorod-rich ZnO on rheological, sorption isotherm, and physicochemical properties of bovine gelatin films. LWT-Food Sci. Tech., 58(1), 142-149.
[7]Heydari, A., I. Alemzadeh, and M. Vossoughi. (2013). Functional properties of biodegradable corn starch nanocomposites for food packaging applications. Mat. Des., 50954-961.
[8]Shaili, T., M.N. Abdorreza, and N. Fariborz. (2015). Functional, thermal, and antimicrobial properties of soluble soybean polysaccharide biocomposites reinforced by nano TiO2. Carbohydr. Polym., 134, 726-731.
[9]Nassiri, R. and A. MohammadiNafchi. (2013). Antimicrobial and barrier properties of bovine gelatin films reinforced by nano TiO2. J. Chem. Health Risks, 3(3), 12-28.
[10]Marvizadeh, M.M., A.M. Nafchi, and M. Jokar. (2014). Improved physicochemical properties of tapioca starch/bovine gelatin biodegradable films with zinc oxide nanorod. J. Chem. Health Risks, 4(4), 25-31.
[11]Skocaj, M., M. Filipic, J. Petkovic, and S. Novak. (2011). Titanium dioxide in our everyday life; is it safe?. Radiology Oncology, 45(4), 227-247.
[12]Weir, A., P. Westerhoff, L. Fabricius, and N. von Goetz. (2012). Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Tech., 46(4), 2242-2250.
[13]Almasi, H., B. Ghanbarzadeh, and N.A. Pezeshki. (2009). Improving the physical properties of starch and starch–carboxymethyl cellulose composite biodegradable films. Iranian J. Food Sci. Tech., 6(3), 1-11.
[14]ASTM. (2010). Standard test method for tensile properties of thin plastic sheeting, D882, Annual Book of ASTM standards, American Society for Testing & Materials, Philadelphia, PA, USA.
[15]ASTM. (2005). Standard test methods for water vapor transmission of materials, E96/E96M-05. Annual book of ASTM standards, American Society for Testing & Materials, Philadelphia, PA, USA.
[16]Maizura, M., A. Fazilah, M.H. Norziah, and A.A. Karim. (2007). Antibacterial activity and mechanical properties of partially hydrolyzed sago starch–alginate edible film containing lemongrass oil. J. Food Sci., 72(6), 324-330.
[17]Kiatkamjornwong, S., W. Chomsaksakul, and M. Sonsuk. (2000). Radiation modification of water absorption of cassava starch by acrylic acid/acrylamide. Radiat. Phys. Chem., 59(4), 413-427.
[18] ASTM. (2005). Standard test method for oxygen gas transmission rate through plastic film and sheeting using a coulometric sensor, D3985. Annual book of ASTM standards, American Society for Testing & Materials, Philadelphia, PA, USA.
[19]Lin, W., Y. Xu, C.-C. Huang, Y. Ma, K.B. Shannon, D.-R. Chen, and Y.-W. Huang. (2009). Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells. J. Nanoparticle Res., 11(1), 25-39.
[20]Maizura, M., A. Fazilah, M.H. Norziah, and A.A. Karim. (2007). Antibacterial activity and mechanical properties of partially hydrolyzed sago starch-alginate edible film containing lemongrass oil. J Food Sci., 72(6), 324-330.
[21]Yu, J., J. Yang, B. Liu, and X. Ma. (2009). Preparation and characterization of glycerol plasticized-pea starch/ZnO–carboxymethylcellulose sodium nanocomposites. Bioresour. Technol., 100(11), 2832-2841.
[22]Tunc, S., H. Angellier, Y. Cahyana, P. Chalier, N. Gontard, and E. Gastaldi. (2007). Functional properties of wheat gluten/montmorillonite nanocomposite films processed by casting. J. Membr. Sci., 289(1–2), 159-168.
[23]Hosseini, S.F., M. Rezaei, M. Zandi, and F.F. Ghavi. Preparation and functional properties of fish gelatin–chitosan blend edible films. Food Chem., 136(3–4), 1490-1495.
[24]Yu, D., R. Cai, and Z. Liu. (2004). Studies on the photodegradation of Rhodamine dyes on nanometer-sized zinc oxide. Spectrochim. Acta, Part A, 60(7), 1617-1624.
[25]Thellen, C., C. Orroth, D. Froio, D. Ziegler, J. Lucciarini, R. Farrell, N.A. D'Souza, and J.A. Ratto. (2005). Influence of montmorillonite layered silicate on plasticized poly(l-lactide) blown films. Polym., 46(25), 11716-11727.
[26]Tang, J., Y. Wang, H. Liu, and L.A. Belfiore. (2004). Effects of organic nucleating agents and zinc oxide nanoparticles on isotactic polypropylene crystallization. Polym., 45(7), 2081-2091.
[27]de Moura, M.R., L.H.C. Mattoso, and V. Zucolotto. (2012). Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. J. Food Eng., 109(3), 520-524.
[28]Sothornvit, R. and N. Pitak. (2007). Oxygen permeability and mechanical properties of banana films. Food Res. Int., 40(3), 365-370.
[29]Zeppa, C., F. Gouanvé, and E. Espuche. (2009). Effect of a plasticizer on the structure of biodegradable starch/clay nanocomposites: Thermal, water-sorption, and oxygen-barrier properties. J. App. Polym. Sci., 112(4), 2044-2056.
[30]Li, J.H., R.Y. Hong, M.Y. Li, H.Z. Li, Y. Zheng, and J. Ding. (2009). Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings. Prog. Org. Coat., 64(4), 504-509.