استخراج ترکیبات زیست‌فعال از پوست سیب‌زمینی با کمک امواج فراصوت: رویکردی پایدار برای بازیابی تانن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مهندسی مکانیک بیوسیستم دانشکده کشاورزی دانشگاه فردوسی مشهد مشهد ایران

2 دانشگاه فردوسی مشهد ، مشهد ، ایران

چکیده

در این پژوهش، استخراج ترکیبات زیست‌فعال، به‌ویژه تانن‌ها، از پوست سیب‌زمینی ـ که یکی از پسماندهای رایج کشاورزی است ـ با استفاده از روش استخراج با کمک امواج فراصوت مورد بررسی قرار گرفت. به‌منظور افزایش بازده استخراج ترکیبات فنولی و تانن‌ها، بهینه‌سازی پارامترهای استخراج از جمله نوع حلال (آب، متانول، اتانول، استون) و زمان استخراج (10 و 15 دقیقه) انجام شد. نتایج نشان داد که آب مؤثرترین حلال برای استخراج ترکیبات فنولی و تانن‌ها بوده و بیشترین بازده در زمان 15 دقیقه به‌دست آمد. به‌طور مشخص، با استفاده از آب، میزان 219.5 ± 75.4 میلی‌گرم ترکیبات فنولی و 142.83 ± 9.50 میلی‌گرم تانن به ازای هر 100 گرم پوست خشک سیب‌زمینی استخراج شد. بهینه بودن این پارامترهای استخراج از طریق تحلیل آماری از جمله آنالیز واریانس (ANOVA) تأیید شد، به‌طوری‌که اثر نوع حلال و زمان استخراج بر بازده استخراج معنادار بود (P<0.01). روش استخراج با کمک امواج فراصوت به‌عنوان روشی کارآمد، پایدار و مقرون‌به‌صرفه اثبات شد و پتانسیل بالایی برای کاربردهای صنعتی، به‌ویژه در صنایع غذایی، دارویی و آرایشی دارد. این مطالعه رویکردی امیدبخش برای ارزش‌آفرینی از ضایعات پوست سیب‌زمینی ارائه می‌دهد که به کاهش ضایعات و تولید ترکیبات زیست‌فعال ارزشمند کمک می‌کند.

چکیده تصویری

استخراج ترکیبات زیست‌فعال از پوست سیب‌زمینی با کمک امواج فراصوت: رویکردی پایدار برای بازیابی تانن

تازه های تحقیق

  • استخراج ترکیبات زیست‌فعال از پوست سیب‌زمینی با کمک امواج فراصوت بررسی و بهینه‌سازی شد.
  • نوع حلال و زمان استخراج به عنوان عوامل مؤثر بر بازده استخراج ترکیبات فنولی و تانن‌ها شناسایی شدند.
  • آب بهترین حلال برای استخراج ترکیبات فنولی و تانن‌ها شناخته شد.
  • بیشترین میزان تانن استخراج‌شده با آب در زمان ۱۵ دقیقه به‌دست آمد.
  • روش استخراج فراصوتی روشی مؤثر، اقتصادی و سازگار با محیط‌زیست برای استفاده صنعتی معرفی شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Ultrasound-Assisted Extraction of Bioactive Compounds from Potato Peel: A Sustainable Approach for Tannin Recovery

نویسندگان [English]

  • fatemeh Mortazavi 1
  • Rasool Khodabakhshian 2
1 Biosystem department Ferdowsi university Mashhad
2 Department of Biosystem Ferdowsi University Mashhad Iran
چکیده [English]

This study investigates the ultrasound-assisted extraction of bioactive compounds, particularly tannins, from potato peel, a widely available agricultural by-product. The optimization of extraction parameters, including solvent type (water, methanol, ethanol, acetone) and extraction time (10 and 15 minutes), was carried out to maximize the yield of phenolic compounds and tannins. The results showed that water was the most effective solvent for both phenolic and tannin extraction, with the highest yields obtained at 15 minutes. Specifically, 219.5 ± 75.4 mg of phenolic compounds and 142.83 ± 9.50 mg of tannins per 100g of dry potato peel were recovered using water. The optimization of these extraction parameters was confirmed through statistical analysis, including ANOVA, which revealed significant effects of both solvent type and extraction time on the extraction efficiency (P<0.01). The ultrasound-assisted extraction method proved to be an efficient, sustainable, and cost-effective technique, demonstrating its potential for industrial-scale applications, particularly in the food, pharmaceutical, and cosmetic industries. This study offers a promising approach to valorize potato peel waste, contributing to both waste reduction and the production of valuable bioactive compounds.

کلیدواژه‌ها [English]

  • Agricultural by-products
  • Industrial applications
  • Potato peel
  • Tannin extraction
  • Ultrasound-assisted extraction
  • Waste valorization
  1. Ezekiel, R., Singh, N., Sharma, S., & Kaur, A. (2013). Beneficial phytochemicals in potato — A review. Journal of Food Chemistry, 50(2), 487-496.
  2. Sampaio, S. L., Petropoulos, S. A., Alexopoulos, A., Heleno, S. A., Santos-Buelga, C., Barros, L., & Ferreira, I. C. F. R. (2020). Potato peels as sources of functional compounds for the food industry: A review. Trends in Food Science & Technology, 103, 118-129. https://doi.org/10.1016/j.tifs.2020.07.01
  3. (2022). FAOSTAT Database. Food and Agriculture Organization of the United Nations. Available at: http://www.fao.org/faostat/en/
  4. Gustavsson, J., Cederberg, C., Sonesson, U., Van Otterdijk, R., & Meybeck, A. (2011). Global food losses and food waste: Extent, causes and prevention. FAO.
  5. Gustavsson, J., Cederberg, C., Sonesson, U., Van Otterdijk, R., & Meybeck, A. (2011). Global food losses and food waste: Extent, causes and prevention. FAO.
  6. Chauhan, A., Islam, F., Imran, A., Ikram, A., Zahoor, T., Khurshid, S., & Shah, M. A. (2023). A review on waste valorization, biotechnological utilization, and management of potato. Food Science & Nutrition, 11(10), 5773-5785. https://doi.org/10.1002/fsn3.3546
  7. Khanal, S., Karimi, K., Majumdar, S., Kumar, V., Verma, R., Bhatia, S. K., . . . Kumar, D. (2024). Sustainable utilization and valorization of potato waste: State of the art, challenges, and perspectives. Biomass Conversion and Biorefinery, 14(19), 23335-23360. https://doi.org/10.1007/s13399-023-04521-1
  8. Sampaio, S. L., Petropoulos, S. A., Alexopoulos, A., Heleno, S. A., Santos-Buelga, C., Barros, L., & Ferreira, I. C. F. R. (2020). Potato peels as sources of functional compounds for the food industry: A review. Trends in Food Science & Technology, 103, 118-129. https://doi.org/10.1016/j.tifs.2020.07.01
  9. Rodríguez-Martínez, B., Gullón, B., & Yáñez, R. (2021). Identification and recovery of valuable bioactive compounds from potato peels: A comprehensive review. Antioxidants (Basel), 10(10). https://doi.org/10.3390/antiox10101630
  10. Ijaz, N., Bashir, S., Ikram, A., Zafar, A., Ul Ain, H. B., Ambreen, S., . . . Madilo, F. K. (2024). Valorization of potato peel: A sustainable eco-friendly approach. CyTA - Journal of Food, 22(1), 2306951. https://doi.org/10.1080/19476337.2024.2306951
  11. Mortazavi, F., Khodabakhshian, R., & Moeenfard, M. (2024). Comparing and examining the tannin content of potato peel with four different solvents. Journal of Agricultural Machinery, 14(3), 271-282. https://doi.org/10.22067/jam.2023.80710.1147
  12. Pizzi, A. (2019). Tannins: Prospectives and actual industrial applications. Biomolecules, 9(8). https://doi.org/10.3390/biom9080344
  13. Pizzi, A. (2021). Tannins medical/pharmacological and related applications: A critical review. Sustainable Chemistry and Pharmacy, 22, 100481. https://doi.org/10.1016/j.scp.2021.100481
  14. Cuong, D. X., Hoan, N. X., Dong, D. H., Thuy, L. T. M., Thanh, N. V., Ha, H. T., Tuyen, D. T. T., & Chinh, D. X. (2020). Tannins: Structural properties, biological properties, and current knowledge.
  15. Panzella, L., Moccia, F., Nasti, R., Marzorati, S., Verotta, L., & Napolitano, A. (2020). Bioactive phenolic compounds from agri-food wastes: An update on green and sustainable extraction methodologies. Front Nutrition, 7, 60. https://doi.org/10.3389/fnut.2020.00060
  16. Sarangi, P. K., Vivekanand, V., Mohanakrishna, G., Pattnaik, B., Muddapur, U. M., & Aminabhavi, T. M. (2023). Production of bioactive phenolic compounds from agricultural by-products towards bioeconomic perspectives. Journal of Cleaner Production, 414, 137460. https://doi.org/10.1016/j.jclepro.2023.137460
  17. Fraga-Corral, M., García-Oliveira, P., Pereira, A. G., Lourenço-Lopes, C., Jimenez-Lopez, C., Prieto, M. A., & Simal-Gandara, J. (2020). Technological application of tannin-based extracts. Molecules, 25(3). https://doi.org/10.3390/molecules25030614
  18. Prado-Acebo, I., Cubero-Cardoso, J., Lu-Chau, T. A., & Eibes, G. (2024). Integral multi-valorization of agro-industrial wastes: A review. Waste Management, 183, 42-52. https://doi.org/10.1016/j.wasman.2024.05.001
  19. Sharma, K., Kumar, V., Kaur, J., Tanwar, B., Goyal, A., Sharma, R., . . . Kumar, A. (2021). Health effects, sources, utilization, and safety of tannins: A critical review. Toxin Reviews, 40(4), 432-444. https://doi.org/10.1080/15569543.2019.1662813
  20. Jing, W., Xiaolan, C., Yu, C., Feng, Q., & Haifeng, Y. (2022). Pharmacological effects and mechanisms of tannic acid. Biomedicine & Pharmacotherapy, 154, 113561. https://doi.org/10.1016/j.biopha.2022.113561
  21. Shirmohammadli, Y., Efhamisisi, D., & Pizzi, A. (2018). Tannins as a sustainable raw material for green chemistry: A review. Industrial Crops and Products, 126, 316-332. https://doi.org/10.1016/j.indcrop.2018.10.034
  22. Dang Xuan, C., Nguyen Xuan, H., Dinh Huu, D., Le Thi Minh, T., Nguyen Van, T., Hoang Thai, H., . . . Dang Xuan, C. (2019). Tannins: Extraction from plants. In A. Alfredo (Ed.), Tannins (pp. Ch. 4). Rijeka: IntechOpen
  23. De Hoyos-Martínez, P. L., Merle, J., Labidi, J., & Charrier – El Bouhtoury, F. (2019). Tannins extraction: A key point for their valorization and cleaner production. Journal of Cleaner Production, 206, 1138-1155. https://doi.org/10.1016/j.jclepro.2018.09.243
  24. Aimone, C., Grillo, G., Boffa, L., Giovando, S., & Cravotto, G. (2023). Tannin extraction from chestnut wood waste: From lab scale to semi-industrial plant. Applied Sciences, 13(4), 2494. https://doi.org/10.3390/app13042494
  25. Pizzi, A., Laborie, M.-P., & Candan, Z. (2024). A review on sources, extractions and analysis methods of a sustainable biomaterial: Tannins. Journal of Renewable Materials, 12(3), 397-425. https://doi.org/10.32604/jrm.2023.046074
  26. Fraga-Corral, M., García-Oliveira, P., Pereira, A. G., Lourenço-Lopes, C., Jimenez-Lopez, C., Prieto, M. A., & Simal-Gandara, J. (2020). Technological application of tannin-based extracts. Molecules, 25(3). https://doi.org/10.3390/molecules25030614
  27. Das, A. K., Islam, M. N., Faruk, M. O., Ashaduzzaman, M., & Dungani, R. (2020). Review on tannins: Extraction processes, applications and possibilities. South African Journal of Botany, 135, 58-70. https://doi.org/10.1016/j.sajb.2020.08.008
  28. Duarte, H., Gomes, V., Aliaño-González, M. J., Faleiro, L., Romano, A., & Medronho, B. (2022). Ultrasound-assisted extraction of polyphenols from maritime pine residues with deep eutectic solvents. Foods, 11(23), 3754. https://doi.org/10.3390/foods11233754
  29. Liu, Y., Zhe, W., Zhang, R., Peng, Z., Wang, Y., Gao, H., . . . Xiao, J. (2022). Ultrasonic-assisted extraction of polyphenolic compounds from Paederia scandens (Lour.) Merr. using deep eutectic solvent: Optimization, identification, and comparison with traditional methods. Ultrasonics Sonochemistry, 86, 106005. https://doi.org/10.1016/j.ultsonch.2022.106005
  30. Watrelot, A. A., & Bouska, L. (2022). Optimization of the ultrasound-assisted extraction of polyphenols from Aronia and grapes. Food Chemistry, 386, 132703. https://doi.org/10.1016/j.foodchem.2022.132703
  31. De Souza Ribeiro, M. M., Viganó, J., de Novais, N. S., de Souza Mesquita, L. M., Kamikawachi, R. C., Vilegas, W., . . . Veggi, P. C. (2023). The effect of ultrasound on improving the extraction of tannins from the Stryphnodendron adstringens bark. Sustainable Chemistry and Pharmacy, 33, 101044. https://doi.org/10.1016/j.scp.2023.101044
  32. Hu, Y., Qian, W., Fan, S., Yang, Y., Liao, H., Zhuang, G., & Gao, S. (2024). Ultrasonic-assisted extraction of phenolic compounds from Lonicera similis flowers at three harvest periods: Comparison of composition, characterization, and antioxidant activity. Molecules, 29(14). https://doi.org/10.3390/molecules29143280
  33. Quaratesi, I., Calinescu, I., Lavric, V., Ferrara, V., Badea, E., Chipurici, P., Dumbravă, E. -G., Constantinescu, R. -R., Ignat, N. D., & Popa, I. (2024). Loop-ultrasound-assisted extraction: An efficient approach for the recovery of bioactive compounds from oak bark. Agronomy, 14(7), 1452. https://doi.org/10.3390/agronomy14071452
  34. Kumari, B., Tiwari, B. K., Hossain, M. B., Rai, D. K., & Brunton, N. P. (2017). Ultrasound-assisted extraction of polyphenols from potato peels: Profiling and kinetic modelling. International Journal of Food Science & Technology, 52(6), 1432-1439. https://doi.org/10.1111/ijfs.13404
  35. Riciputi, Y., Diaz-de-Cerio, E., Akyol, H., Capanoglu, E., Cerretani, L., Caboni, M. F., & Verardo, V. (2018). Establishment of ultrasound-assisted extraction of phenolic compounds from industrial potato by-products using response surface methodology. Food Chemistry, 269, 258-263. https://doi.org/10.1016/j.foodchem.2018.06.154
  36. Prakash Maran, J., Manikandan, S., Vigna Nivetha, C., & Dinesh, R. (2017). Ultrasound assisted extraction of bioactive compounds from Nephelium lappaceum L. fruit peel using central composite face centered response surface design. Arabian Journal of Chemistry, 10, S1145-S1157. https://doi.org/10.1016/j.arabjc.2013.02.007
  37. Montero-Calderon, A., Cortes, C., Zulueta, A., Frigola, A., & Esteve, M. J. (2019). Green solvents and ultrasound-assisted extraction of bioactive orange (Citrus sinensis) peel compounds. Scientific Reports, 9(1), 16120. https://doi.org/10.1038/s41598-019-52717-1
  38. Makkar, H. P. S. (2003). Measurement of total phenolics and tannins using Folin-Ciocalteu method. In H. P. S. Makkar (Ed.), Quantification of tannins in tree and shrub foliage: A laboratory manual (pp. 49-51). Dordrecht: Springer Netherlands.
  39. Pandey, V., Singh, V., & Shukla, K. (2017). Quantitative estimation of secondary metabolites. International Journal of Scientific Engineering and Research, 5, 13-15. https://doi.org/10.70729/IJSER151590
  40. Ezekiel, R., Singh, N., Sharma, S., & Kaur, A. (2013). Beneficial phytochemicals in potato — A review. Journal of Food Chemistry, 50(2), 487-496.
  41. Wang, C., Shi, L., Fan, L., Ding, Y., Zhao, S., Liu, Y., & Ma, C. (2013). Optimization of extraction and enrichment of phenolics from pomegranate (Punica granatum L.) leaves. Journal of Industrial Crops and Products, 42, 587-594.
  42. Maqsood, S., Benjakul, S., & Shahidi, F. (2013). Emerging role of phenolic compounds as natural food additives in fish and fish products. Critical Reviews in Food Science and Nutrition, 53, 162-179. https://doi.org/10.1080/10408398.2010.518775
  43. Singh, J., Rasane, P., Kaur, R., Kaur, H., Garg, R., Kaur, S., . . . Mlcek, J. (2023). Valorization of grape (Vitis vinifera) leaves for bioactive compounds: Novel green extraction technologies and food-pharma applications. Frontiers in Chemistry, 11. https://doi.org/10.3389/fchem.2023.1290619
  44. Ersan, S., Ustundag, O. G., Carle, R., & Schweiggert, R. M. (2018). Subcritical water extraction of phenolic and antioxidant constituents from pistachio (Pistacia vera L.) hulls. Journal of Food Chemistry, 253, 46-54.
  45. Brouwer, P., Nierop, K. G. J., Huijgen, W. J. J., & Schluepmann, H. (2019). Aquatic weeds as novel protein sources: Alkaline extraction of tannin-rich Azolla. Biotechnology Reports, 24, e00368. https://doi.org/10.1016/j.btre.2019.e00368
  46. Sirisangsawang, R., & Phetyim, N. (2023). Optimization of tannin extraction from coconut coir through response surface methodology. Heliyon, 9(2), e13377. https://doi.org/10.1016/j.heliyon.2023.e13377
  47. Schieber, A., & Saldana, A. M. (2009). Potato peels: A source of nutritionally and pharmacologically interesting compounds—A review. Global Science Books, Food, 3(2), 23-29.
  48. Jansen, G., & Flamme, W. (2006). Coloured potatoes (Solanum tuberosum L.) – Anthocyanin content and tuber quality. Genetic Resources and Crop Evolution, 53(7), 1321-1331. https://doi.org/10.1007/s10722-005-3880-2
  49. Saad, H., Charrier-El Bouhtoury, F., Pizzi, A., Rode, K., Charrier, B., & Ayed, N. (2012). Characterization of pomegranate peel tannin extractives. Industrial Crops and Products, 40, 239-246. https://doi.org/10.1016/j.indcrop.2012.02.038