[1] Akbas, M.Y., Olmez, H. (2007). Effectiveness of organic acids, ozonated water and chlorine dippings on microbial reduction and storage quality of fresh-cut iceberg lettuce. Journal of the Science of Food and Agriculture 87, 2609–2616.
[2] Allende, A., Aguayo, E., Artés, F. (2004). Microbial and sensory quality of commercial fresh processed red lettuce throughout the production chain and shelf-life. International Journal of Food Microbiology 91, 109–117.
[3] Alexopoulos, A., Plessas, S., Ceciu, S., Lazar, V., Mantzourani, I., Voidarou, C., Stavropoulou, E., Bezirtzoglou, E. (2013). Evaluation of ozone efficacy on the reduction of microbial population of fresh cut lettuce (Lactuca sativa) and green bell pepper (Capsicum annuum). Food Control 30, 491-496.
[4] AOAC. (2005). Official Methods of Analysis. Association of Official Analytical Chemists, Washington, DC, USA.
[5] Beltran, D., Selma, M.V., Marin, A., Gil, M. I. (2005). Ozonated water extends the shelf life of fresh-cut lettuce. Journal of Agricultural and Food Chemistry 53, 5654–5663.
[6] Bermudez-Aguirre, D., Barbosa-Canovas, G.V. (2013). Disinfection of selected vegetables under nonthermal treatments: Chlorine, acid citric, ultraviolet light and ozone. Food Control 29, 82-90.
[7] Chen, Z., Zhub, Ch., Zhangb, Y., Niub, D., Dub, J. (2010). Effects of aqueous chlorine dioxide treatment on enzymatic browning and shelf-life of fresh-cut asparagus lettuce (Lactuca sativa L.). Postharvest Biology and Technology 58, 232–238.
[8] De la Rosa, L.A., Alvarez-Parrilla, E., Gonzalez-Aguilar, G.A. (2010). Fruit and Vegetable Phytochemicals: Chemistry, Nutritional Value and Stability. Wiley-Blackwell: Hoboken, New Jersey, USA.
[9] Devic, E., Guyot, S., Daudin, J., Bonazzi, C. (2010). Effect of temperature and cultivar on polyphenol retention and mass transfer during osmotic dehydration of apples. Journal of Agricultural and Food Chemistry 58, 606-616.
[10] Dychdala, G.R. (1991). Chlorine and chlorine compounds. In: Block, S.S. (eds.), Disinfection Sterilization & Preservation, fourth ed. Lea and Febiger, Philadelphia, Pp. 131–151.
[11] Hassenberg, K., Idler, C., Molloy, E., Geyer, M., Plöchl, M., Barnes, J. (2007). Use of ozone in a lettuce-washing process: an industrial trial. Journal of the Science of Food and Agriculture 87, 914–919.
[12] James, S.J., Ketteringham, L.P., James, C. (2000). Using ozone to reduce the bacteria contamination of green peppers, herbs and salad vegetables. Food & Drink Special Interest Group 21, 129-132.
[13] Kim, J.G., Yousef, A.E., Chism, G.W. (1999). Use of ozone to inactivate microorganisms on lettuce. Journal Food Safety 19, 17–34.
[14] Koseki, S., Isobe, S. (2006). Effect of ozonated water treatment on microbial control and on browning of iceberg lettuce (Lactuca sativa L.). Journal of Food Protection 69, 154–160.
[15] Leon, K., Mery, D., Pedreschi, F., Leon, J. (2006). Color measurement in L*a*b* units from RGB digital images. Food Research International 39, 1084–1091.
[16] Martín-Diana, A. B., Rico, D., Barry-Ryan, C., Frías, J. M., Henehan, G. T. M., Barat, J. M. (2007). Efficacy of steamer jet-injection as alternative to chlorine in fresh-cut lettuce. Postharvest Biology and Technology 45, 97-107.
[17] Muthukumarappan, K., O’Donnell, C. P., Cullen, P.J. (2008). Ozone utilization. Encyclopedia of Agricultural, Food, and Biological Engineering 52, 1-4.
[18] Olmez, H., Akbas, M. Y. (2009). Optimization of ozone treatment of fresh-cut green leaf lettuce. Journal of Food Engineering 90 (4), 487–494.
[19] Ölmez, H., Leskinen, M.b., Särkkä-Tirkkonen, M. (2007). Effect of ozonated water on the microbiological physical and nutritional quality parameters of minimally processed lettuce during shelf-life. 3rd QLIF Congress, Hohenheim, Germany.
[20] Pascual, A., Llorca, I., Canut, A. (2007). Use of ozone in food industries for reducing the environmental impact of cleaning and disinfection activities. Trends in Food Science and Technology 18, 29–35.
[21] Terada, M., Watanabe, Y., Kunitomo, M., Hayashi, E. (1978). Differential rapid analysis of ascorbic-acid and ascorbic-acid 2-sulfate by dinitropHenylhydrazine method. Analytical Biochemistry 84, 604–608.
[22] Zakaria, M., Simpson, K., Brown, P.R., Krstulovic, A. (1979). Use of reversed-phase high-performance liquid chromatographic analysis for the determination of provitamin a carotenes in tomatoes. Journal of Chromatography 176, 109–117.