مدل سازی هوشمند بافت نان به کمک روش اندازه گیری صوت و شبکه عصبی (مطالعه موردی: نان غنی شده با چیا)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه علوم و مهندسی صنایع غذایی، دانشکده علوم دامی و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ایران

2 استادیار، گروه علوم و مهندسی صنایع غذایی، دانشکده علوم دامی و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران

3 استادیار، گروه مکانیک بیوسیستم، دانشکده مهندسی زراعی و عمران روستایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران

4 دانشیار، گروه علوم و مهندسی صنایع غذایی، دانشکده علوم دامی و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران

چکیده

هدف از پژوهش حاضر مد‌سازی هوشمند بافت نان به روش غیر مخرب صوتی- مکانیکی می‌باشد. بدین منظور بافت نان غنی شده با 3 درصد مختلف چیا اصلاح‌شده (5/2، 5، 5/7 درصد) توسط دستگاه بافت‌سنج با سرعت آزمون 3 میلی‌متر در ثانیه تا 30 درصد فشردگی و در شرایطی که میکروفون در فاصله 5 سانتی‌متری از نمونه‌ها و در زاویه 45 درجه نسبت به افق قرار داشت مورد ارزیابی قرار گرفت. از صدای ذخیره شده در خلال بارگذاری ویژگی‌های میانگین شدت صوت، بیشترین مقدار صدا، واریانس، انحراف معیار، میانگین جذر قدر مطلق، جذر میانگین مربعات، چولگی، چقرمگی، ممان پنجم، ممان ششم، انرژی، آنتروپی در حوزه زمان، آنتروپی طیفی و فرکانس طبیعی در حوزه فرکانس استخراج شدند. بعد از انتخاب مناسب‌ترین ویژگی‌ها (بیشترین مقدار صدا، واریانس، انحراف معیار، میانگین جذر قدر مطلق سیگنال، انرژی، آنتروپی و فرکانس طبیعی) بر اساس آنالیز آماری، شبکه عصبی مصنوعی با 3 الگوریتم (لونبرگ مارکوارت، شیب توام مقیاس شده، سرعت یادگیری متغیر) با 7 نرون در لایه ورودی (متناسب با ویژگی‌های انتخاب شده) و 3 نرون در لایه خروجی (سفتی، چسبندگی، قابلیت جویدن) آموزش و مورد آزمون قرار گرفت. بر اساس نتایج مشخص گردید که خطای آموزش در الگوریتم لونبرگ- مارکوارت نسبت به سایر الگوریتم‌ها کمتر بود و خطای جذر میانگین مربعات مرحله آزمون این الگوریتم به ترتیب برای پیش‌گویی سفتی، قابلیت جویدن و چسبندگی 14/0، 23/0 و 33/0 بدست آمد که نشان از توانایی روش پیشنهادی در پیش‌گویی کیفیت نان دارد.

چکیده تصویری

مدل سازی هوشمند بافت نان به کمک روش اندازه گیری صوت و شبکه عصبی (مطالعه موردی: نان غنی شده با چیا)

تازه های تحقیق

  • اصلاح دانه چیا با استفاده از  روش برشته کردن.
  • تعیین کیفیت نان غنی شده با  آرد چیای اصلاح شده با روش مبنی بر آزمون های صوتی- مکانیکی در خلال انبار مانی.
  • از سه الگوریتم یادگیری (لونبرگ-مارکوارت، شیب توام مقیاس شده، سرعت یادگیری متغیر) به منظور آموزش شبکه عصبی با استفاده از ویژگی­های صوتی استفاده گردید. 
  • لونبرگ-مارکوارت (بهترین الگوریتم یادگیری) ویژگی­های سفتی، قابلیت جویدن و چسبندگی را به ترتیب با (97/0=R2)،   (95/0=R2) و (93/0=R2) پیش بینی نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Intelligent Modeling of Bread texture Acoustic Measurement Method and Artificial Neural Network (Case Study: Enriched Bread with Chia)

نویسندگان [English]

  • Mahrokh Hatamian 1
  • Mohammad Noshad 2
  • Saman Abdanan Mehdizadeh 3
  • Hassan Barzegar 4
1 Department of Food Science & Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Iran
2 Department of Food Science & Technology, Faculty of Animal Science and Food Technology, Khuzestan Ramin University of Agricultural & Natural Resources, Mollasani, Iran
3 Assistant professor of Khuzestan Agricultural Sciences and Natural Resources University
4 Food Science and Technology, Agricultural Sciences and Natural Resources University of Khuzestan
چکیده [English]

The purpose of this study is to model the bread texture by acoustical- mechanical method, non- destructively. To do so, bread texture enriched with 3 different levels of modified chia (2.5%, 5% and 7.5%) was evaluated by texture analyzer at a test speed of 3 mm. s-1 to 30% compression, while the microphone was located at 5 cm from the samples at a 45° angle to the horizon. From the sound recorded during loading mean sound intensity, maximum of sound, variance, standard deviation, root mean absolute value, root mean square value, skewness, kurtosis, fifth moment, sixth moment, energy, entropy in time domain, and spectral entropy and natural frequency in the frequency domain were extracted. After selecting the most suitable features (maximum sound, variance, standard deviation, root mean absolute value, energy, entropy and natural frequency), based on statistical analysis, artificial neural network with 3 algorithms ( Marquardt, scaled conjugate gradient, gradient descent) was trained and tested with 7 neurons in the input layer (in accordance with the selected features) and 3 neurons in the output layer (hardness, gumminess, chewiness). Based on the results, the training error in the Levenberg - Marquardt algorithm was lower than the other algorithms, and the root mean squared error of the test stage of this algorithm to predict hardness, gumminess and chewiness were 0.14, 0.23, and 0.33, respectively. This shows the ability of the proposed method in predicting the quality of bread.

کلیدواژه‌ها [English]

  • Texture
  • acoustical features
  • storage
  • bread
  • modified chia
[1] Soleimani Fard, M., Alami, M., Maghsoud loo, Y.,& Najafian, G. (2013). The effect of Arabic gel as improving the rheological properties of wheat flour dough and anti-stagnation agent of Barbari bread.J. Innov. Food Sci. Technol., 5, 1-11. [In Persian]
[2] Hejri Zarifi, S., Hadad- Khoda-Parast, M., Sheikh al-Islami, Z., Shfafi Znozian, M.,& Pourferzad, A. (2014). Investigation of the effect of date kernel germ on dough rheology and sensory properties of Barbari bread. J. Innov. Food Sci. Technol., 6, 25-32. [In Persian]
[3] Majzoobi, M.,  Mortazavi, S. H., Asadi-Yousofabad, S. H., &  Farahnaky, A. (2013). Effects of acorn flour on the properties of dough and Barbari bread. J. Food Ind. Res., 23, 271-280. [In Persian]
[4] Jalini, M., ghiafeh davoodi, M.,& Sheikh al-Islami, Z.( 2017). The Effect of Adding Your Seed to the Nutritional and Shelf Life of Barberry bread. J. Innov. Food Sci. Technol., 9, 1-11. [In Persian]
[5] Moazeni, M., Zarringhalami, S., & Ganjloo, A. (2018) . Effect of Barbari dough enrichment with quinoa whole flour on farinograph characteristics and bread quality. J. Food Ind. Res., 28, 103- 112. [In Persian]
 [6] Costantini, L., Lukšič, L., Molinari, R., Kreft, I., Bonafaccia, G., Manzi, L.,& Merendino, N. (2014). Development of gluten-free bread using tartary buckwheat and chia flour rich in flavonoids and omega-3 fatty acids as ingredients. Food chem., 165, 232-240.
[7] Alfredo, V. O., Gabriel, R. R., Luis, C. G.,& David, B. A. (2009). Physicochemical properties of a fibrous fraction from chia (Salvia hispanica L.). LWT., 42, 168-173.
[8] Lazaro, H., Puente, L., Zúñiga, M. C.,& Muñoz, L. A. (2018). Assessment of rheological and microstructural changes of soluble fiber from chia seeds during an in vitro micro-digestion. LWT., 95, 58-64.
[9] Muñoz, L. A., Cobos, A., Diaz, O.,& Aguilera, J. M. (2012). Chia seeds: Microstructure, mucilage extraction and hydration. J. Food Eng., 108, 216-224
[10] Jogihalli, P., Singh, L.,& Sharanagat, V. S. (2017). Effect of microwave roasting parameters on functional and antioxidant properties of chickpea (Cicer arietinum). LWT., 79, 223-233.
[11] Gholami, Z., & Ansari, S. (2018). Modeling the effect of microwave roasting on physicochemical properties of watermelon seeds and its optimization. Innov. Food Sci. Technol. (Food Sci. Technol.)., 10, 71-85. [In Persian]
[12] Chen, J., Karlsson, C.,& Povey, M. (2005). Acoustic envelope detector for crispness assessment of biscuitsJ. Texture Stud., 36, 139-156.
[13] Jakubczyk, E., Gondek, E.,& Tryzno, E. (2017). Application of novel acoustic measurement techniques for texture analysis of co-extruded snacks. LWT., 75, 582-589.
[14] Çarşanba, E., Duerrschmid, K.,& Schleining, G. (2018). Assessment of acoustic-mechanical measurements for crispness of wafer products. J. Food Eng., 229, 93-101
[15] Huerta, K., Soquetta, M., Alves, J., Stefanello, R., Kubota, E.,& Rosa, C. S. (2018). Effect of flour chia (Salvia hispanica L.) as a partial substitute gum in gluten free breads. Int. Food Res. J., 25, 755-766.
[16] Abdanan Mehdizadeh, M., & Amraee, S. (2017). Computational estimation of L*a*b* units from RGB using machine vision. Iran. J. Food Sci. Ind. Res., 13, 53-64. [In Persian]  
 [17] Arimi, J. M., Duggan, E., O’sullivan, M., Lyng, J. G.,& O’riordan, E. D. (2010). Effect of water activity on the crispiness of a biscuit (Crackerbread): mechanical and acoustic evaluation. Food Res. Int., 43, 1650-1655.
[18] Błońska, A., Marzec, A.,& Błaszczyk, A. (2014). Instrumental evaluation of acoustic and mechanical texture properties of short‐dough biscuits with different content of fat and inulin. J. Texture Stud., 45, 226-234.
[19] Nouri, M., Nasehi, B., Mehdizadeh, S. A.,& Goudarzi, M. (2017). A novel application of vibration technique for non-destructive evaluation of bread staling. J. Food Eng., 197, 44-47.
[20] Salehifar, M., Shahedi, M., & Kabir, Gh. (2006). Investigating the effects of using different percentages of oatmeal and excess fat in bread preparation formulation on sensory and stale properties of bread texture. Agric. Sci. Technol. Nat. Resour.,  10, 233-244.[In Persian]
 [21] Romankiewicz, D., Hassoon, W. H., Cacak-Pietrzak, G., Sobczyk, M., Wirkowska-Wojdyła, M., Ceglińska, A.,& Dziki, D. (2017). The effect of chia seeds (Salvia hispanica L.) addition on quality and nutritional value of wheat bread. J.Food Qual., 2017, 1-7.
[22] Zhang, W., Cui, D.,& Ying, Y. (2014). Nondestructive measurement of pear texture by acoustic vibration method. Postharvest Biol. Technol., 96, 99-105.
[23] Zdunek, A., Cybulska, J., Konopacka, D.,& Rutkowski, K. (2011). Evaluation of apple texture with contact acoustic emission detector: A study on performance of calibration models. J. Food Eng., 106, 80-87.
[24] Różyło, R.,& Laskowski, J. (2011). Predicting bread quality (bread loaf volume and crumb texture). Pol. J.Food Nutr.Sci., 61, 61-67.