ارزیابی تاثیر ژل آلوئه ورا به عنوان پوشش خوراکی بر ویژگی های میکروبی، فیزیکوشیمیایی و حسی توت فرنگی تازه طی انبارداری

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، دانشکده کشاورزی، دانشگاه کردستان

چکیده

توت فرنگی به دلایلی مانند، رطوبت و فعالیت متابولیک بالا و فساد ناشی از رشد میکروارگانیسم ها، عمر نگهداری کوتاهی دارد. در این تحقیق از پوششی خوراکی بر پایه ژل آلوئه ورا در غلظت های متفاوت از ژل رقیق شده با آب مقطر (10، 40 و 70 درصد وزنی- وزنی) به عنوان تیمار پس از برداشت با هدف افزایش عمر نگهداری و کاهش سرعت تخریب ویژگی های کیفی توت فرنگی طی 16 روز انبار مانی در دمای 4 درجه سانتی گراد و رطوبت نسبی 5 ± 75 درصد استفاده شد. پایداری میکروبی (تعداد کپک و مخمر و کل باکتری های مزوفیل هوازی)، خصوصیات فیزیکوشیمیایی(اسید آسکوربیک، کاهش وزن، آنتوسیانین، اسیدیته، pH و کل مواد جامد محلول) و ویژگی های حسی توت فرنگی پوشش داده شده با ژل آلوئه ورا پس از بسته بندی و پس از 4، 8، 12 و 16 روز از شروع انبار داری در مقایسه با شاهد ارزیابی گردید. پوشش های آلوئه ورا به صورت معنی داری رشد میکروارگانیسم ها را به تاخیر انداخته و افت وزن و تخریب اسید آسکوربیک را نسبت به شاهد تا 16 روز پس از شروع انبار مانی کاهش دادند. بیشترین فعالیت ضد میکروبی در میوه های پوشش دار شده، با 70 درصد ژل آلوئه ورا مشاهد شد، اما در میزان تخریب اسید اسکوربیک (6/44 میلیگرم در 100 گرم میوه) و افت وزن (1/14 درصد) نتایج مطلوبی تا پایان انبار مانی حاصل نشد. پوشش های حاوی40 درصد ژل آلوئه ورا علاوه بر کاهش بار میکروبی در توت فرنگی تازه (log cfu/g95/2 برای کپک و مخمر و log cfu/g26/2 برای باکتری های مزوفیل هوازی) به صورت معنی داری (05/0 p

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Aloe vera gel effect as an edible coating on microbial, physicochemical and sensorial characteristics of fresh strawberry during storage

نویسنده [English]

  • Aryou Emamifar
Department of Food Science and Technology, College of Agriculture, University of Kurdistan Assistant Professor of Central research of strawberry breeding and improvement, University of Kurdistan
چکیده [English]

Strawberry fruits have a very short postharvest life, mostly due to their relatively high water content and metabolic activity, and rots from microbial growth. An edible coating based on diluted Aloe vera gel by distilled water at different concentrations (e.g. 10, 40, and 70%, w/w) was used as postharvest treatment to examine of shelf-life and maintain the quality of strawberries during storage at 4°C and 75 ± 5 % relative humidity. Microbial stability (yeasts and molds and total aerobic bacteria), physiochemical characteristics (ascorbic acid (AA) content, weight loss, anthocyanin content, acidity, soluble solids content, and pH), and sensorial attributes (color, taste and total acceptation) of them were evaluated after 0, 4, 8, 12 and 16 days of storage, as compared to control. Aloe vera  gel coatings significantly (p<0.05), delayed changes in the microbial growth, and reduced the weight loss and degradation of AA compared to control samples up to 16 days. Although antimicrobial activity was ranked highest significantly (p<0.05)for the treatment coating with 70% Aloe vera gel after 16 days, but some parts of physicochemical characteristic including degradation of AA (44.6 mg/100g) and weight loss (14/1%) of fruits were lost. Application of the treatment coating with 40% Aloe vera  gel reduced the microbial load (2.95 cfu/g  and 2.26 cfu/g for yeast and mold and total counts, respectively), degradation of AA (53.1 mg/100g), weight loss (12%) and increased visual acceptance in strawberry treated  significantly (p<0.05 ) up to 16 days.

کلیدواژه‌ها [English]

  • Strawberry
  • Aloe vera gel
  • coating
  • Shelf life
[1] Jiang, Y. M., Joyce, D. C., Terry, L. A. (2001). 1-Methylcyclopropene treatment affects strawberry fruit decay. Postharvest Biol. Technol., 23, 227–232.
[2] Vargas, M., Albors, A., Chiralt, A., González-Martínez, C. (2006). Quality of cold- stored strawberries as affected by chitosan-oleic acid edible coating. Postharvest Biol. Technol., 41, 164-171.
[3] Aday, M. S., Caner, C. (2011). The Applications of ‘active packaging and chlorine dioxide’ for extended shelf life of fresh strawberries. Packag. Technol. Sci.,  24, 123-136.
[4] Park, S. I., Stan, S. D., Daeschel, M. A., Zhao, Y. (2005). Antifungal coatings on fresh  strawberries (Fragaria × ananassa) to control mold growth during cold storage. J. Food Sci., 70, 202-207.
[5] Wright, K. P, & Kader, A. A. (1997). Effect of slicing and controlled- atmosphere storage on the ascorbate content and quality of strawberries and persimmons. Postharvest Biol. Technol., 10, 39 – 48.
[6] Perez, A. G., Sanz, C. (2001). Effect of high-oxygen and high-carbon-dioxide atmosphere on strawberry flavor and other quality traits. J. Agric. Food Chem., 49, 2370-2375.
[7] Pelayo, C., Ebeler, S. E., Kader, A. A. (2003). Postharvest life and flavor quality of three strawberry cultivars kept at 5C in air or air+20KPa CO2. Postharvest Biol. Technol., 27,171-183.
[8] Almenar, E., Del-Valle, V., Hernández-Muňoz, P., Lagarόn, J. M., Catalá, R., Gavara, R. (2007). Equilibrium modified atmosphere packaging of wild strawberries. J. Sci Food Agric., 87, 1931–1939.
[9] Odriozola-Serrano, I., Soliva-Fortuny, R., Martín-Belloso, O. (2010). Changes in bioactive composition of fresh-cut strawberries stored under super atmospheric oxygen, low-oxygen or passive atmospheres. J. Food Compos.  Anal., 23, 37–43.
[10] Erkan, M., Wang, Y. S., Wang, Y. C. (2008). Effect of UV treatment on antioxidant capacity, antioxidant enzyme activity and decay in strawberry fruit. Postharvest Biol.Technol.,  48, 163-171.
[11] Vicente, A. R., Martinez, G. A., Civello, P. M., Chaves, A. R. (2002). Quality of heat-treatment strawberry fruit during refrigerated storage. Postharvest Biol. Technol, 25, 59-71.
[12] Lara, I., Garcia, P., Vendrell, M. (2006). Post-harvest heat treatments modify cell wall composition of strawberry (Fragaria× ananassa Dach.) fruit. Sci. Hortic., 109, 48-53.
[13] Cao, S., Ho, Z., Pang, B., Wang, H., Xie, H., Wu, F. (2010). Effect of ultrasound treatment on fruit decay and quality maintenance in strawberry after harvest. Food Control, 21, 529–532.
[14] Aday, M. S., Temizkan, R., Büyükcan, M. B., Caner, C. (2013). An innovative technique for extending shelf life of strawberry: Ultrasound. LWT - Food Sci. Technol.,  52, 93–101.
[15] Ponappa, T., Scheerens, J. C., Miller, A. R. (1993). Vacuum infiltration of polyamines increases firmness of strawberry slices under various storage conditions. J. Food Sci., 58, 361-364.
[16] Mo,  E. K, Sung,  C. K. (2007). Phenyl Ethyl alcohol (PEA) application slows fungal growth and maintains aroma in strawberry. Postharvest Biol. Technol., 45, 234 - 239.
[17] Ayala-Zavala, J. F., Wang, S. Y., Wang, C. Y., Gonzalez-Aguilar, G. A. (2005). Methyl jasmonate in conjunction with ethanol treatments increased antioxidant capacity, aroma compounds and postharvest life of strawberry fruit. Eur. Food Res. Inter., 22, 1438-1443.
[18] Zhang, F. S., Wang,  X. Q., Ma, S. L., Cao,  S. F.,  Li, N., Wang, X. X.,  Zheng, Y. H.  (2005). Effects of methyl jasmonate on postharvest decay in strawberry fruit and the possible mechanisms involved.  ISHS Acta Hortic., 712, 693-698.
[19] Harker, F. R., Elgar, H. J., Watkins, C. B, Jakson, P. J., Hallett, I. C. (2000). Physical and mechanical changes in strawberry fruit after high carbon dioxide treatments. Postharvest Biol.Technol, 19, 139 - 46.
[20] Zhu, S., Zhou, S. H. (2007). Effect of nitric oxide on ethylene production in strawberry fruit during storage. Food Chem., 100, 1517–1522.
[21] Bower, J. H., Biasi, W. V., Mitcham, E. J. (2003). Effect of ethylene and 1-MCP on the quality and storage life of strawberries. Postharvest Biol. Technol., 28, 471-423.
[22] Zhang, H., Ma, L., Turner, M., Xu, H., Zheng, X., Dong, Y., Jiang, S. (2010). Salicylic acid enhances bio control efficacy of Rhodotorula glutinis against postharvest Rhizopus rot of strawberries and the possible mechanisms involved. Food Chem., 122, 577-583.
[23] Tanada-Palmu, S. P., Grosso, C. R. F. (2005). Effect of edible wheat gluten-based films and coatings on refrigerated strawberry (fragaria. ananassa) quality. Postharvest Biol. Technol., 36, 199-208.
[24] Del-Vallea, V., Hernández-Muñozb, P., Guardac, A., Galottod, M. J. (2005). Development of a cactus-mucilage edible coating (Opuntia ficus indica) and its application to extend strawberry (fragaria ananassa) shelf-life. Food Chem., 91, 751–756.
[25] Caner, C., Aday, M. S. (2009).  Maintaining quality of fresh strawberries through various modified atmosphere packaging. Packag. Technol. Sci., 22, 115–122.
[26] Almenar, E., Catala, R.,  Hernandez-Muñoz, P., Gavara, R. (2009). Optimization of an active package for wild strawberries based on the release of 2-nonanone.  LWT - Food Sci.Technol., 42, 587–593.
[27] Mehyar, G. F., Han, J. H. (2011). Active Packaging for Fresh-Cut Fruits and Vegetables, in Modified Atmosphere Packaging for Fresh-Cut Fruits and Vegetables (eds A. L. Brody, H. Zhuang and J. H. Han), John Wiley & Sons, Inc., Hoboken, NJ, USA.
[28] Yang, F. M., Li, H. M., Li, F., Xin, Z. H., Zhao, L. Y., Zheng, Y. H., Hu, Q. H. (2010). Effect of Nano-Packing on Preservation Quality of Fresh Strawberry (Fragaria ananassa Duch. cv Fengxiang) during Storage at 4 °C. J. Food Sci., 75, 236–240.
[29] Bifani, V.,  Ramírez, C., Ihl, M.,  Rubilar, M., García, A., Zaritzky, N. (2007). Effects of murta (Ugni molinae Turcz) extract on gas and water vapor permeability of carboxymethylcellulose-based edible films. LWT - Food Sci.Technol., 40, 1473-1481.
[30] Valverde, J. M., Valero, D., Martinez-Romero, D., Guillen, F., Castillo, S. Serrano, M. (2005). Novel coating based on Aloe vera gel to maintain table grape quality and safety. J. Agric. Food Chem., 53, 7807–7813.
[31] Hernández-Munoz, P., Almenar, E., Valle, V.D., Velez, D., Gavara, R. (2008). Effect of chitosan coating combined with postharvest calcium treatment on strawberry (Fragaria x ananassa) quality during refrigerated storage. Food Chem., 110, 428-35.
[32] Perdones, A, Sánchez-González, L, Chiralt, A, Vargas, M. (2012)Effect of chitosan–lemon essential oil coatings on storage keeping quality of strawberry. Postharvest Biol Technol., 70, 32-41.
[33] Campos, R. P., Rodovalho, M. D. A. (2009). Coating on ‘Camarosa’ organic strawberries stored at low temperature. Braz. J. Food Technol., 12, 60-67.
[34] Adetunji, C. O., Fawole, O. B., Arowora, K. A., Nwaubani, S. I, Ajayi, E. S., Oloke, J. K., Majolagbe,  O. M., Ogundele, B. A, Aina J. A., Adetunji, J. B. (2012). Effects of edible coatings from Aloe vera gel on quality and postharvest physiology of ananas comosus (L.) fruit during ambient storage. Global J. Sci. Front Res. Bio-Tech. Genet., 12, 39-43.
[35] Marpudi,  S. L, Abirami,  L. S. S, Pushkala, R., Srividya, N. (2011). Enhancement of storage life and quality maintenance of papaya fruits using Aloe vera based antimicrobial coating. Indian. J. Biotechnol., 10, 83-89.
[36] Navarro, D., Díaz-Mula, H. M., Guillén, F., Zapata, P. J., Castillo, S., Serrano, M., Valero, D., Martínez-Romero, D. (2011). Reduction of nectarine decay caused by Rhizopus stolonifer, Botrytis cinerea and Penicillium digitatum with Aloe vera gel alone or with the addition of thymol. Int. J. Food Microbiol., 151, 241–246.
[37] Martinez-Romero, D., Alburquerque, N., Valverde, J. M., Guillén, F., Castillo, S., Valero, D., Serrano, M. (2006). Postharvest sweet cherry quality and safety maintenance by Aloe vera treatment: a new edible coating. Postharvest Biol. Technol., 39, 93–100.
[38] Nabigol, A., Asghari, A. (2013). Antifungal activity of Aloe vera gel on quality of minimally processed pomegranate arils. International Int. J. Agron. Plant Prod., 4, 833-838.
[39] Pal, S. Sahrawat, A. Prakash, D. (2013). Aloe vera: composition, processing and medicinal properties. Int.  J. Curr. Discover Innov., 2, 106-122.
[40] Jasso de Rodriguez, D., Hernandez-Castillo, R., Rodriguez-Gracia, Angulo-Sanchez, J. L. (2005). Antifungal activity in vitro of Aloe vera pulp and liquid fraction against plant pathogenic fungi. Ind. Crop Prod., 21, 81–87.
[41] Castillo, S., Navarro, D., Zapata, P. J., Guillén, F., Valero, D., Serrano, M.,  Martínez-Romero, M. (2010). Antifungal efficacy of Aloe vera in vitro and its use as a preharvest treatment to maintain postharvest table grape quality. Postharvest Biol. Technol.,  57, 183–188.
[42] Eshun, K., He, Q. (2004). Aloe vera: a valuable ingredient for the food, pharmaceutical and cosmetic industries-a review. Crit. Rev. Food Sci. Nutr., 44, 91–96.
[43] Kader, A. A. (2005). Increasing food availability by reducing postharvest losses of fresh produce. Acta Hort. 682, 2169-2176.
[44] Alexandre, E. M. C., Brandao, T. R. S.,  Cristina L. M. S. (2012). Efficacy of non-thermal technologies and sanitizer solutions on microbial load reduction and quality retention of strawberries. J. Food Eng., 108, 417-426.
[45] Cheng, G., Breen, P. (1991). Activity of phenylalanine ammonia-lyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. J. Amer. Soc.  Hort.  Sci., 116, 865-869.
[46] A. O. A. C. (2002). Vitamin C (ascorbic acid) in vitamin preparations and juices: 2, 6 dichloroindophenol titrimetric method final action. Official Methods of Analysis of AOAC International, W. Horwitz (Ed), (17 th ed). Association of Official Analytical Chemists, Gaithersburg, MD, Official Method 967.21.
 [47] A.O.A.C. (2000) a. Official methods of analysis of the Association of Official Analytical Chemists: 932.12 Fruits and fruit products. Solids (Soluble) in Fruits and Fruit Product: Refractometer Method. S Arlington, Virginia, USA. 7p.
[48] A.O.A.C. (2000) b. Official methods of analysis of the Association of Official Analytical Chemists: 942.15A Fruits and fruit products - Acidity (Titratable) of Fruit Products. Association of Official Analytical Chemists, Arlington.11p.
[49] A.O.A.C. 1990. Method Number 981.12. Official Methods of Analisys, 15ª Edition. Vegetables/Acidified Foods. Association of Official Analytical Chemists, Washington, USA.
[50] Rosen, J. C., Kader, A. A. (1989). Postharvest physiology and quality maintenance of sliced pear and strawberry fruits. J. Food Sci., 54, 656-659.
[51] Ferro, V.A., Bradbury, F., Cameron, P., Shakir, E., Rahman,  S. R, Stimson,  W. H.  (2003). In vitro susceptibilities of Shigella flexneri and Streptococcus pyogenes to inner gel of Aloe barbadensis Miller. Antimicrob. Agents Ch., 43, 1137-1139.
[52] Garcia-Sosa, K., Villarreal-Alvarez, N., Lubben, P., Peña-Rodriguez, L. M. (2006). Chrysophanol, an antimicrobial anthraquinone from the root extract of Colubrina greggiiJ. Mex. Chem. Soc., 50, 76-78.
[53] Wu, Y. W., Ouyang, J., Xiao, X. H, Gao, W. Y, Liu, Y. (2006). Antimicrobial properties and toxicity of anthraquinones by microcalorimetric bioassay. Chin. J. Chem., 24, 45-50.
[54] Reynolds, T., Dweck, A. C. (1999). Aloe vera leaf gel: a review update. J. Ethnopharmacol., 68, 3-37.
[55] Pugh, N., Ross, S. A., Elsohly, M. A, Pasco, D. S. (2001).  Characterisation of Aloeride, a new high molecular weight polysaccharide from Aloe vera with potent immunostimulatory activity. J.Agric.Food Chem., 49, 1030-1034.
[56] Wang,  H. H, Chung,  J. G., Ho,  C. C., Wu, C. T.,  Chang,  S. H.  (1998). Aloe-emodin effects on arylamine N-acetyl transferase activity in the bacteria Heliobacter pylori. Planta Med., 64, 176-178.
[57] Babaei, A.,  Manafi, M.,Tavafi, H. (2013). Study on effect of Aloe vera leaf extracts on growth of Aspergillus flavusAnn. Rev. Res. Biol., 3, 1091-1097.
[58] Sitara, U.,  Hassan, N., Naseem, J. (2011). Antifungal activity of aloe vera gel against plant pathogenic fungi. Pakistan J. Bot., 43, 2231-2233.
[59] Saks, Y., Barkai-Golan, R. (1995). Aloe vera gel activity against plant pathogenic fungi. Postharvest Biol. Technol., 6, 159-165.
[60] Castillo, S., Navarro, D., Zapata, P.J., Guillén, F., Valero, D., Serrano, M., Martínez-Romero, D. (2010). Antifungal efficacy of Aloe vera in vitro and its use as a preharvest treatment to maintain postharvest table grape quality. Postharvest Biol. Technol., 57, 183–188.
[61] Martínez-Romero, D., Castillo, S., Guillén, F., Díaz-Mul, H.M., Zapata, P.J., Valero, D., Serrano, M. (2013). Aloe vera gel coating maintains quality and safety of ready-to-eat pomegranate arils. Postharvest Biol. Technol., 86, 107–112.
[61] Cordenunsi, B. R., Genovese, M. I., Nascimiento, J. R. O., Hassimotto, N. M. A., Santos, R. J., Lajolo, F. M. (2005). Effects of temperature on the chemical composition and antioxidant capacity of three strawberry cultivars. Food Chem., 91, 113– 121.
[62] Mahmood, T, Anwar, F., Abbas, M., Boyce , M. C., Saari, N. (2012). Compositional variation in sugars and organic acids at different maturity stages in selected small fruits from Pakistan. Int. J. Mol. Sci., 13, 1380-1392.
[63] Koyuncu,  M. A. (2004). Quality changes of three strawberry cultivars during the cold storage. Eur. J. Hort. Sci., 65, 193–200.
[64] Plaza, L., Sánchez-Moreno, C., Elez-Martínez, P., De Ancos, B., Martín-Belloso, O., Cano, M. P. (2006).  Effect of refrigerated storage on vitamin C and antioxidant activity of orange juice processed by high-pressure or pulsed electric fields with regard to low pasteurization. Eur. Food Res. Technol., 223, 487–493.
[65] Atress, A. S. H., El-Mogy, M. M., Aboul-Anean, H. E., Alsanius, B. W. (2010). Improving strawberry fruit storability by edible coating as a carrier of thymol or calcium chloride. J. Hortic. Sci. Ornam. Plants, 2, 88-97.
[66] Ergun, M., Satici, F. (2012). Use of aloe vera gel as biopreservative for ‘granny smith’ and ‘red chief’ apples. J. Anim. Plant Sci., 22, 363-368.
[67] Yaman, Ö., Bayoindirli, L. (2002). Effects of an edible coating and cold storage on shelf-life and quality of cherries. LWT - Food Sci. Technol., 35, 146–150.
[68] Mohebbi, M., Ansarifar, E., Hasanpour, N., Amiryousefi, M. R. (2012). Suitability of aloe vera and gum tragacanth as edible coatings for extending the shelf life of button mushroom. Food Bioprocess Technol., 5, 3193-3202.
[69] Mali, S., Grossmann, M.V.E., 2003. Effects of yam starch films on storability and quality of fresh strawberries (Fragaria ananassa). J. Agric. Food Chem. 51,7005-7011.
[70] Serrano, M., Martinez-Romero, D., Castillo, S., Guillen, F., Valero, D. (2005). The use of antifungal compounds improves the beneficial effect of MAP in sweet cherry storage. Innov. Food Sci. Emerg. Technol., 6, 115–123.