بهینه‌‌یابی و مدل‌سازی سینتیک انتقال جرم طی فرآیند خشک‌‌کردن کف‏پوشی شیره خرما

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه علوم و مهندسی صنایع غذایی، دانشکده علوم دامی و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، خوزستان ایران

2 دانشیار، گروه علوم و مهندسی صنایع غذایی، دانشکده علوم دامی و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، خوزستان ایران

3 دانشجوی کارشناسی ارشد، گروه علوم و مهندسی صنایع غذایی، دانشکده علوم دامی و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، خوزستان ایران

4 استادیار، گروه فیزیولوژی و تکنولوژی پس از برداشت، مؤسسه تحقیقات علوم باغبانی، پژوهشکده خرما و میوههای گرمسیری، سازمان تحقیقات، آموزش و ترویج کشاورزی، اهواز، ایران.

چکیده

خشک‌کردن کف‏پوشی یکی از روش‏های جدید خشک‌کردن است که مواد مایع یا نیمه مایع به یک کف پایدار تبدیل شده و سپس در معرض خشک‌کردن توسط هوای داغ قرار می‏گیرند. در این پژوهش، تولید پودر شیره خرما با استفاده از روش خشک کردن کف‏پوشی مورد مطالعه قرار گرفت و فرآیند تولید پودر شیره خرما به روش سطح پاسخ بهینه‏سازی شد. فاکتور‌های مستقل شامل مالتودکسترین (0، 10 و 20 درصد وزنی-وزنی) و آلبومین (5، 10 و 15 درصد وزنی-وزنی) و پاسخ‌ها شامل میزان پایداری و دانسیته کف، رطوبت، شاخص حلالیت آب، شاخص جذب آب، دانسیته فشرده، دانسیته غیر فشرده، pH و آبگیری مجدد بودند. به منظور بررسی رفتار خشک‌کردن کف شیره خرمای بهینه شده، فرایند خشک‌کردن در سه دمای 50، 60 و 70 درجه سلسیوس و در دو ضخامت کف 4 و 6 میلی‏متر بررسی گردید و 11 مدل خشک‌کردن جهت بررسی سینتیک خشک‌کردن مورد استفاده قرار گرفتند. بر اساس نتایج بدست آمده از این مطالعه، مدل پیج قادر به توصیف رفتار خشک ‌شدن کف شیره خرما در تمام دماهای خشک‌کردن و ضخامت کف بود. ضریب نفوذ مؤثر رطوبت نیز با استفاده از قانون دوم فیک محاسبه گردید و در محدوده‏ی 8-10 × 43/2 تا 8-10 × 08/3 متر مربع بر ثانیه و 8-10 × 67/4 تا 8-10 × 21/6 متر مربع بر ثانیه با انرژی فعال‏سازی 95/10 و 05/13 کیلوژول بر مول به ترتیب برای ضخامت‏های 4 و 6 میلی‏متر بود.

چکیده تصویری

بهینه‌‌یابی و مدل‌سازی سینتیک انتقال جرم طی فرآیند خشک‌‌کردن کف‏پوشی شیره خرما

تازه های تحقیق

  • از روش خشک کردن کف پوشانی می توان برای تولید پودر شیره خرما استفاده کرد.
  • غلظت 5 درصد آلبومین 305/5 درصد مالتودکسترین بهترین شرایط جهت تولید کف بود.
  • از مدل پیچ می توان برای توصیف  رفتار خشک شدن کف شیره خرما استفاده کرد.
  • با افزایش دمای خشک کردن و ضخامت کف، ضریب نفوذ نیز افزایش یافت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimization and modeling of mass transfer kinetics during foam-mat drying of date syrup

نویسندگان [English]

  • Mohammad Noshad 1
  • Mohammad Hojjati 2
  • Parisa Ghasemi 3
  • Ahmad Mostaan 4
1 Department of Food Science & Technology, Faculty of Animal Science and Food Technology, Khuzestan Ramin University of Agricultural & Natural Resources, Mollasani, Iran
2 Agricultural Sciences and Natural Resources University of Khuzestan
3 MSc student, Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Khuzestan Iran
4 Assistant Professor, Department of Physiology and Postharvest Technology, Horticultural Science Research Institute, Date Palm and Tropical Fruits Research Center, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
چکیده [English]

Foam-mat drying is one of the newest drying techniques, in which liquids or semi-liquids are transformed to stable foams and they were then exposed to hot air drying. In this study, the foam-mat drying technique was applied to produce date syrup powder, and the production process of the date syrup powder was optimized using response surface methodology. Independent factors were maltodextrin (0, 10, and 20% w/v) and albumin (5, 10, and 15% w/v), and the responses included foam stability, density, moisture content, water solubility index, water absorption index, bulk density, tapped density, pH, and rehydration ratio. The drying process was performed at three temperatures of 50, 60, and 70 ºC on 4- and 6-mm foam thickness to evaluate the drying behavior of the optimized date syrup foam, and 11 drying models were used to investigate the drying kinetics. According to the results of the present study, Page model was able to describe the drying behavior of date syrup foam at all drying temperatures and foam thicknesses. The effective moisture diffusivity was also calculated using Fick’s second law and it was in the range of 2.43 × 10-8 to 3.08 × 10-8 m2/s and 4.67 × 10-8 to 6.21 × 10-8 m2/s with activation energy values of 10.95 and 13.05 kJ/mole, respectively, for 4- and 6-mm foam thicknesses.

کلیدواژه‌ها [English]

  • date syrup
  • Maltodextrin
  • Foam-mat drying
  • Optimization
[1]  Siyahsar, M., Khezri, M., Tavassolian, I. (2018). Effect of different pollinizer genotypes on some quantitative and qualitative characteristics and yield of the tissue cultured "Zahedi" date palm. Pomology Research, 2(2), 33-53. [In Persian].
[2] Al-Alawi, R. A., Al-Mashiqri, J. H., Al-Nadabi, J. S., Al-Shihi, B. I., & Baqi, Y. (2017). Date palm tree (Phoenix dactylifera L.): natural products and therapeutic options. Frontiers in plant science8, 845.
[3] Biglari, F., AlKarkhi, A. F., & Pasa, A.S. (2008). Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food chemistry107(4), 1636-1641.
[4] Bhandari, B. R., Bansal, N., Zhang, M., & Schuck, P. (Eds.). (2013). Handbook of Food Powders: Processes and Properties. Elsevier.
[5]  Sarabandi, Kh., Sadeghi-Mahoonak, A., (2017). The effect of inlet air temperature and the amounts of maltodextrin on physicochemical properties of spray dried date palm syrup.Innovative Food Technologyies, 4(2), 1-15. [In Persian].
 [6] Jahroomi, M., Niakowsari, M., Sharifi, A., Kalantari, M. (2016). Investigation of physical and chemical properties of grape syrup, date syrup and fig syrup dried in drum dryer. Innovation in Food Science and Technology, 7(3), 85-95. [In Persian].
  [7] Noshad, M., Ghasemi, P., Dehghani, S. (2019). Effect of Chia seed gum on physicochemical properties of powder production using foam-mat drying method. Food Science and Technology, 16(90),343-351. [In Persian].
[8]Zhang, L., Zeng, X., Fu, N., Tang, X., Sun, Y., & Lin, L. (2018). Maltodextrin: A consummate carrier for spray-drying of xylooligosaccharides. Food research international106, 383-393.
[9] Santhalakshmy, S., Bosco, S. J. D., Francis, S., & Sabeena, M. (2015). Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice powder. Powder Technology274, 37-43.
[10]  Mansoori- Tehrani, N., Farahnaki, A., Majzoobi, M., Badei, F. (2013). Production of date palm powder using gum Arabic and evaluation of its physicochemical properties. Scientific Conference and Festival of Iranian Dates, 575-576. [In Persian].
 [11] Gabas, A. L., Telis, V. R. N., Sobral, P. J. D. A., & Telis-Romero, J. (2007). Effect of maltodextrin and arabic gum in water vapor sorption thermodynamic properties of vacuum dried pineapple pulp powder. Journal of Food Engineering82(2), 246-252
[12] Kumar, C., Millar, G. J., & Karim, M. A. (2015). Effective diffusivity and evaporative cooling in convective drying of food material. Drying Technology33(2), 227-237.
[13] Mounir, S. (2017). Foam Mat Drying. In: Drying Technologies for Foods-Fundamentals and Applications. pp. 169-191.
[14] de Carvalho Tavares, I. M., de Castilhos, M. B. M., Mauro, M. A., Ramos, A. M., de Souza, R. T., Gómez-Alonso, S., ... & Lago-Vanzela, E. S. (2019). BRS Violeta (BRS Rúbea x IAC 1398-21) grape juice powder produced by foam mat drying. Part I: Effect of drying temperature on phenolic compounds and antioxidant activity. Food Chemistry, 298, 124971.
[15] Isa, J., & Olalusi, A. P. (2019). Optimization of Foam-Mat Drying Process of Watermelon Pulp Using Response Surface Methodology. Journal of Energy Research and Reviews, 1-11.
[16] Guazi, J. S., Lago‐Vanzela, E. S., & Conti‐Silva, A. C. (2019). Development of smoothies from dehydrated products of strawberry and banana pulps obtained through foam‐mat drying. International journal of food science & technology54(1), 54-61.
[17] Salahi, M. R., Mohebbi, M., & Taghizadeh, M. (2015). Foam‐Mat Drying of Cantaloupe (C ucumis melo): Optimization of Foaming Parameters and Investigating Drying Characteristics. Journal of food processing and preservation39(6), 1798-1808.
[18] Dehghannya, J., Pourahmad, M., Ghanbarzadeh, B., & Ghaffari, H. (2019). Heat and mass transfer enhancement during foam-mat drying process of lime juice: Impact of convective hot air temperature. International Journal of Thermal Sciences135, 30-43.
[19] AOAC. (1995). Official methods of analysis (16th ed.); Association of Official Analytical Chemists: AOAC Arlington, VA, Washington DC. USA.
[20] Asokapandian, S., Venkatachalam, S., Swamy, G. J., & Kuppusamy, K. (2016). Optimization of foaming properties and foam mat drying of muskmelon using soy protein. Journal of food process engineering39(6), 692-701.
[21] Sharri, N. A., Sulaiman, R., Rahman, R. A., & Bakar, J (2017). Production of pineapple fruit (Ananas comosus) powder using foam mat drying: Effect of whipping time and egg albumen concentration. Journal of food processing and preservation42(2), e13467.
[22] Qadri, O. S., & Srivastava, A. K. (2017). Microwave‐Assisted Foam Mat Drying of Guava Pulp: Drying Kinetics and Effect on Quality Attributes. Journal of food process engineering40(1), e12295.
[23]  Pourmahdi, A., Mohebbi, M., Gohari-Ardabili, A., Varidi, M., Salahe, M.R. (2018). Optimization of potato puree powder production using foam mat drying method. Iranian Food Science and Technology Research Journal, 14(4), 585-600. [In Persian]
 [24] Ertekin, C., & Yaldiz, O. (2004). Drying of eggplant and selection of a suitable thin layer drying model. Journal of food engineering63(3), 349-359.
[25] Karim, A. A., & Wai, C. C. (1999). Foam-mat drying of starfruit (Averrhoa carambola L.) puree. Stability and air drying characteristics. Food Chemistry64(3), 337-343.
[26] Franco, T. S., Ellendersen, L. N., Fattori, D., Granato, D., & Masson, M. L. (2015a). Influence of the addition of Ovalbumin and emulsifier on the physical properties and stability of Yacon (Smallanthus sonchifolius) juice foams prepared for foam mat drying process. Food and bioprocess technology8(10), 2012-2026.
[27] Papalamprou, E. M., Makri, E. A., Kiosseoglou, V. D., & Doxastakis, G. I. (2005). Effect of medium molecular weight xanthan gum in rheology and stability of oil‐in‐water emulsion stabilized with legume proteins. Journal of the Science of Food and Agriculture85(12), 1967-1973.
[28] Franco, T. S., Perussello, C. A., Ellendersen, L. D. S. N., & Masson, M. L. (2015b). Foam mat drying of yacon juice: Experimental analysis and computer simulation. Journal of Food Engineering158, 48-57.
[29] Bikerman, J. J. (2013). Foams (Vol. 10). Springer Science & Business Media.
[30] Bag, S. K., Srivastav, P. P., & Mishra, H. N. (2011). Optimization of process parameters for foaming of bael (Aegle marmelos L.) fruit pulp. Food and Bioprocess Technology4(8), 1450-1458.
[31] Koc, B., Yilmazer, M. S., Balkır, P., & Ertekin, F. K. (2010). Spray drying of yogurt: Optimization of process conditions for improving viability and other quality attributes. Drying Technology28(4), 495-507.
[32] Ng, M. L., & Sulaiman, R. (2018). Development of beetroot (Beta vulgaris) powder using foam mat drying. LWT88, 80-86.
[33] Cano-Chauca, M., Stringheta, P. C., Ramos, A. M., & Cal-Vidal, J. (2005). Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science & Emerging Technologies, 6(4), 420-428.
[34]  Ebadati, H.R., Sharafi, A., Niakowsari, M. (2017). Optimization of dough powder production process by foam mat drying method. Innovation in Food Science and Technology, 8(4), 15-26. [In Persian].
 [35] Lund, B., Baird-Parker, A. C., Baird-Parker, T. C., Gould, G. W., & Gould, G. W. (Eds.). (2000). Microbiological safety and quality of food (Vol. 1). Springer Sciense & Business Media.
[36] Feerangurayar, T., Manickavasagan, A., Al-Ismaili, A. M., & Al-Mulla, Y. A. (2017). Effect of carrier agents on flowability and microstructural properties of foam-mat freeze dried date powder. J. Food Eng215, 33-43.
[37] Nelson, D. L., Lehninger, A. L., & Cox, M. M. (2008). Lehninger principles of biochemistry. Macmillan.
[38] Harmayani, E., Winarti, S., & Nurismanto, R. (2011). Preparation of inulin powder from Dioscorea Esculenta Tuber with foam mat drying method. In The 12th Asian food conference; 16-18 June, 2011, BITEC Bangna, Bangkok, Thailand (pp. P30-P36).
[39] Bhandari, B. R., Bansal, N., Zhang, M., & Schuck, P. (Eds.). (2013). Handbook of food powders: Processes and properties. Elsevier.
[40] Sangamithra, A., Venkatachalam, S., John, S. G., & Kuppuswamy, K. (2015). Foam mat drying of food materials: A review. Journal of Food Processing and preservation6(39), 3165-3174.
[41] Kadam, D. M., & Balasubramanian, S. (2011). Foam mat drying of tomato juice. Journal of food processing and preservation35(4), 488-495.
[42] Thuwapanichayanan, R., Prachayawarakorn, S., & Soponronnarit, S. (2008). Drying characteristics and quality of banana foam mat. J. Food. Eng, 86, 573-583.