[1] Afsharnia, F., Mehdizadeh, S. A., Ghaseminejad, M., & Heidari, M. The effect of dynamic loading on abrasion of mulberry fruit using digital image analysis. Information Processing in Agriculture, 4(4), 291-299. (2017)
[2] Al-Amoudi, R. H., Taylan, O., Kutlu, G., et al. Characterization of chemical, molecular, thermal and rheological properties of medlar pectin extracted at optimum conditions as determined by Box-Behnken and ANFIS models. Food Chemistry, 271, 650-662. (2019)
[3] Arakeri, M. P. Computer vision based fruit grading system for quality evaluation of tomato in agriculture industry. Procedia Computer Science, 79, 426-433. (2016)
[4] Arzate-Vázquez, I., Chanona-Pérez, J. J., de Jesús Perea-Flores, M., et al. Image processing applied to classification of avocado variety Hass (Persea americana Mill) during the ripening process. Food and Bioprocess Technology, 4(7), 1307-1313. (2011)
[5] Ashournezhad, M., & Ghasemnezhad, M. Effects of cellophane-film packaging and cold storage on the keeping quality and storage life of loquat fruit (Eriobotrya japonica). Iranian Journal of Nutrition Sciences & Food Technology, 7(2), 95-102. (2012)
[6] Baigvand, M., Banakar, A., Minaei, S., Khodaei, J., & Behroozi-Khazaei, N. Machine vision system for grading of dried figs. Computers and Electronics in Agriculture, 119, 158-165. (2015)
[7] Bhargava, A., & Bansal, A. Fruits and vegetables quality evaluation using computer vision: A review. Journal of King Saud University-Computer and Information Sciences. (2018)
[8] Cárdenas-Pérez, S., Chanona-Pérez, J., Méndez-Méndez, J. V., et al. Evaluation of the ripening stages of apple (Golden Delicious) by means of computer vision system. Biosystems Engineering, 159, 46-58. (2017)
[9] Gruz, J., Ayaz, F. A., Torun, H., & Strnad, M. Phenolic acid content and radical scavenging activity of extracts from medlar (Mespilus germanica L.) fruit at different stages of ripening. Food Chemistry, 124(1), 271-277. (2011)
[10] Hacıseferogˇulları, H., Özcan, M., Sonmete, M. H., & Özbek, O. Some physical and chemical parameters of wild medlar (Mespilus germanica L.) fruit grown in Turkey. Journal of Food Engineering, 69(1), 1-7. (2005)
[11] Helrich, K. (1990). Official methods of analysis of the AOAC International: Association of Official Analytical Chemists.
[12] Hosseinpour, S., Rafiee, S., Mohtasebi, S. S., & Aghbashlo, M. Application of computer vision technique for on-line monitoring of shrimp color changes during drying. Journal of Food Engineering, 115(1), 99-114. (2013)
[13] Huang, Y., Lu, R., & Chen, K. Development of a multichannel hyperspectral imaging probe for property and quality assessment of horticultural products. Postharvest Biology and Technology, 133, 88-97. (2017)
[14] Isbilir, S. S., Kabala, S. I., & Yagar, H. Assessment of in vitro Antioxidant and Antidiabetic Capacities of Medlar (Mespilus germanica). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(2), 384-389. (2019)
[15] Jackman, P., & Sun, D.-W. Recent advances in image processing using image texture features for food quality assessment (Mespilus germanica) . Trends in Food Science & Technology, 29(1), 35-43. (2013)
[16] Khadivi, A., Rezaei, M., Heidari, P., Safari-Khuzani, A., & Sahebi, M. Morphological and fruit characterizations of common medlar (Mespilus germanica L.) germplasm. Scientia Horticulturae, 252, 38-47. (2019)
[17] Kienzle, S., Sruamsiri, P., Carle, R., Sirisakulwat, S., Spreer, W., & Neidhart, S. Harvest maturity specification for mango fruit (Mangifera indica L. ‘Chok Anan’) in regard to long supply chains. Postharvest Biology and Technology, 61(1), 41-55. (2011)
[18] Liming, X., & Yanchao, Z. Automated strawberry grading system based on image processing. Computers and Electronics in Agriculture, 71, S32-S39. (2010)
[19] Makky, M., & Soni, P. Development of an automatic grading machine for oil palm fresh fruits bunches (FFBs) based on machine vision. Computers and Electronics in Agriculture, 93, 129-139. (2013)
[20] Mamashloo, S., Sadeghi, M. A., Ghorbani, M., Alami, M., & Khomeiri, M. The evaluation of antioxidant properties and stability of phenolic copmpounds from medlar (Mespilus germanica L.) fruit. (2012)
[21] Moallem, P., Serajoddin, A., & Pourghassem, H. Computer vision-based apple grading for golden delicious apples based on surface features. Information Processing in Agriculture, 4(1), 33-40. (2017)
[22] Mohammadi, V., Kheiralipour, K., & Ghasemi-Varnamkhasti, M. Detecting maturity of persimmon fruit based on image processing technique. Scientia Horticulturae, 184, 123-128. (2015)
[23] Momin, M., Rahman, M., Sultana, M., Igathinathane, C., Ziauddin, A., & Grift, T. E. Geometry-based mass grading of mango fruits using image processing. Information Processing in Agriculture, 4(2), 150-160. (2017)
[24] Muhammad, G. Date fruits classification using texture descriptors and shape-size features. Engineering Applications of Artificial Intelligence, 37, 361-367. (2015)
[25] Nordey, T., Léchaudel, M., Génard, M., & Joas, J. Spatial and temporal variations in mango colour, acidity, and sweetness in relation to temperature and ethylene gradients within the fruit. Journal of Plant Physiology, 171(17), 1555-1563. (2014)
[26] Nouri-Ahmadabadi, H., Omid, M., Mohtasebi, S. S., & Firouz, M. S. Design, development and evaluation of an online grading system for peeled pistachios equipped with machine vision technology and support vector machine. Information Processing in Agriculture, 4(4), 333-341. (2017)
[27] Nunes, M. C. N., Emond, J.-P., & Brecht, J. K. Quality curves for highbush blueberries as a function of the storage temperature. Small Fruits Review, 3(3-4), 423-440. (2004)
[28] Pourdarbani, R., Ghassemzadeh, H. R., Seyedarabi, H., Nahandi, F. Z., & Vahed, M. M. Study on an automatic sorting system for Date fruits. Journal of the Saudi Society of Agricultural Sciences, 14(1), 83-90. (2015)
[29] Raftani Amiri, Z., & Akbari, N. Evaluation of physicochemical and microbiological properties, antioxidant activities and phenolic Compounds of medlar (Mespilus germanica L.) syrup [In persiam]. Food Science and Technology, 15(75), 81-89. (2018)
[30] Sabzi, S., Abbaspour-Gilandeh, Y., & García-Mateos, G. A new approach for visual identification of orange varieties using neural networks and metaheuristic algorithms. Information Processing in Agriculture, 5(1), 162-172. (2018)
[31] Salehi, F., & Kashsninejad, M. Physicochemical and Rheological Properties of Wild Medlar Concentrate [In persian]. Iranian Journal Food Science And Technology, 13, 49-57. (2017)
[32] Sofu, M. M., Er, O., Kayacan, M., & Cetişli, B. Design of an automatic apple sorting system using machine vision. Computers and Electronics in Agriculture, 127, 395-405. (2016)
[33] Vélez-Rivera, N., Blasco, J., Chanona-Pérez, J., et al. Computer vision system applied to classification of “Manila” mangoes during ripening process. Food and Bioprocess Technology, 7(4), 1183-1194. (2014)
[34] Wan, P., Toudeshki, A., Tan, H., & Ehsani, R. A methodology for fresh tomato maturity detection using computer vision. Computers and Electronics in Agriculture, 146, 43-50. (2018)
[35] Zandi, M., Ganjloo, A., & Bimakr, M. Modelling medlar (Mespilus germanica) quality changes during cold storage using kinetics models and artificial neural network [In persian]. Journal of Food Science & Technology, 16(96), 103-119. (2020)