[1] Berry, C. (1986). Resistant starch: formation and measurement of starch that survives exhaustive digestion with amylolytic enzymes during the determination of dietary fibre. J. Cereal Sci., 4, 301-14.
[2] Sajilata, M. G., Singhal, R. S., Kulkarni, P.R. (2006). Resistant Starch–A Review. Compr Rev Food Sci F., 5, 1-17.
[3] Douglas, L.C., Sanders, M.E. (2008). Probiotics and prebiotics in dietetics practice. J Am Diet Assoc., 3, 108-510.
[4] Wepner, B., Berghofer, E., Miesenberger, E., Tiefenbacher, K. (1999). Citrate starch: Application as resistant starch in different food systems. Starch/Stärke., 51, 354-361.
[5] Kim, S.K., Kwak, J.E. (2004). Estimation of resistant starch content of high-amylose corn starch. Food Sci. Biotechnol., 13, 71–74.
[6] Haralampu, S.G. (2000). Resistant starch—a review of the physical properties and biological impact of RS3. Carbohydr. Polym., 41, 285-292.
[7] Eerlingen, R.C., Delcour, J.A. (1995). Formation, analysis, structure and properties of type III enzyme resistant starch. J Cereal Sci., 22, 129–138.
[8] Augustin, M.A., Sanguansri, P., Htoon, A. (2008). Functional performance of a resistant starch ingredient modified using a microfluidiser. Innov Food Sci Emerg Technol., 9, 224-231.
[9] Lertwanawatana, P., Frazier, R.A., Niranjan, K. (2015). High pressure intensification of cassava resistant starch (RS3) yields. Food Chem., 181, 85–93.
[10] Sievert, D., Pomeranz, Y. (1989). Enzyme-resistant starch. I. Characterization and evaluation by enzymatic, thermoanalytical, and microscopic methods. Cereal Chem., 66, 342-347.
[11] Szczodrak, J., Pomeranz, Y. (1991). Starch and enzyme-resistant starch from high-amylose barley. Cereal Chem., 68, 589-596.
[12] Dundar, A.N., Gocmen, D. (2013). Effects of autoclaving temperature and storing time on resistant starch formation and its functional and physicochemical properties. Carbohydr Polym., 97, 764-771.
[13] Ozturk, S., Koksel, H., Perry, N.G. (2011). Production of resistant starch from acid-modified amylotype starches with enhanced functional properties. J. Food Eng., 103, 156-164.
[14] AOAC. (2000). Official Methods of Analysis Association of Official Analytical Chemists, 17th edn. In:Cunnif, P. (Ed.)., Arlington, VA, USA., pp 1-37.
[15] ISO (Intrenational Organization for Standardization). (2007). ISO 6647: Norme internationale: Riz-détermination de la teneur em amylose. Geneva, Switzerland.
[16] Leach, H.W. (1959). Structure of starch granules. I. Swelling and solubility patterns of various starches. Cereal Chem., 36, 534-544.
[17] Huang, M., Kennedy, J.F., Li, B., Xu, X., Xie, B.J. (2007). Characters of rice starch gel modified by gellan, carrageenan, and glucomannan: a texture profile analysis study. Carbohydr. Polym., 69, 411–418.
[18] Li, S., Ward, R., Gao, Q. (2011). Effect of heat-moisture treatment on the formation and physicochemical properties of resistant starch from mung bean (Phaseolus radiatus) starch. Food Hydrocoll., 25, 1702-1709.
[19] Milašinović, M.S., Radosavljević, M.M., Dokić, L.P. (2010). Effects of autoclaving and pullulanase debranching on the resistant starch yield of normal maize starch. J Serb Chem Soc., 75, 449-458.
[20] Onyango, C., Bley, T., Jacob, A., Henle, T., Rohm, H. (2006). Influence of incubation temperature and time on resistant starch type III formation from autoclaved and acid-hydrolysed cassava starch. Carbohydr. Polym., 66, 494-499.
[21] Aparicio‐Saguilán, A., Flores‐Huicochea, E., Tovar, J., García‐Suárez, F., Gutiérrez‐Meraz, F., Bello‐Pérez, L.A. (2005). Resistant Starch‐rich Powders Prepared by Autoclaving of Native and Lintnerized Banana Starch: Partial Characterization. Starch‐Stärke, 57, 405-412.
[22] Zhao, X.H., Lin, Y. (2009). The impact of coupled acid or pullulanase debranching on the formation of resistant starch from maize starch with autoclaving–cooling cycles. Eur Food Res Technol., 230, 179-184.
[23] Gao, H., Cai, J., Han, W., Huai, H., Chen, Y., Wei, C. (2014). Comparison of starches isolated from three different Trapa species. Food Hydrocoll., 37, 174-181.
[24] Chinnaswamy, R., Hanna, M.A. (1988). Relationship between amylose content and extrusion-expansion properties of com starches. Cereal Chem., 65, 138-143.
[25] Seetharaman, K., Tziotis, A., Borras, F., White, P.J., Ferrer, M., Robutti, J. (2001). Thermal and functional characterization of starch from Argentinean corn. Cereal Chem., 78, 379-386.
[26] Ratnayake, W.S., Jackson, D.S. (2007). A new insight into the gelatinization process of native starches. Carbohydr. Polym., 67, 511-529.
[27] Wu, H.C.H., Sarko, A. (1978). The double-helical molecular structure of B-amylose. Carbohydr. Res., 61, 7-26
[28] Morris, V.J. (1990). Starch gelation and retrogradation. Trends Food Sci Tech., 1, 2-6.
[29] Adebowale, K.O., Lawal, O.S. (2002). Effect of annealing and heat moisture conditioning on the physicochemical characteristics of Bambarra groundnut (Voandzeia subterranea) starch. Mol Nutr Food Res., 46, 311-316.
[30] Köksel, H., Basman, A., Kahraman, K., Ozturk, S. (2007). Effect of acid modification and heat treatments on resistant starch formation and functional properties of corn starch. Int J Food Prop., 10, 691-702.
[31] Yu, S., Ma, Y., Menager, L., Sun, D.W. (2012). Physicochemical properties of starch and flour from different rice cultivars. Food Bioprocess Tech., 5, 626-637.
[32] Lawal, O.S. (2004). Composition, physicochemical properties and retrogradation characteristics of native, oxidised, acetylated and acid-thinned new cocoyam (Xanthosoma sagittifolium) starch. Food Chem., 87, 205-218.
[33] Zeng, S., Wu, X., Lin, S., Zeng, H., Lu, X., Zhang, Y., Zheng, B. (2015). Structural characteristics and physicochemical properties of lotus seed resistant starch prepared by different methods. Food Chem., 186, 213-222.
[34] Fannon, J.E., Hauber, R.J., BeMiller, J.N. (1992). Surface pores of starch granules. Cereal Chem., 69, 284-288.
[35] Stone, L.A., Lorenz, K. (1984). The Starch of Amaranthus—Physico‐chemical Properties and Functional Characteristics. Starch‐Stärke., 36, 232-237.
[36] Singh, N., Kaur, L., Sandhu, K.S., Kaur, J., Nishinari, K. (2006). Relationships between physicochemical, morphological, thermal, rheological properties of rice starches. Food Hydrocoll., 20, 532-542.
[37] Szczesniak, A.S. (2002). Texture is a sensory property. Food Qual Prefer., 13, 215-225.
[38] Choi, S.G., Kerr, W.L. (2003). Effects of chemical modification of wheat starch on molecular mobility as studied by pulsed 1 H NMR. LWT - Food Sci Technol., 36, 105-112.
[39] Czechowska-Biskup, R., Rokita, B., Lotfy, S., Ulanski, P., Rosiak, J.M. (2005). Degradation of chitosan and starch by 360-kHz ultrasound. Carbohydr. Polym., 60, 175-184.
[40] Sanderson, G.R. (1990). Gellan gum, in: Harris, P. Food gels. Springer Netherlands, pp 201-232.
[41] Marshall, S.G., Vsisey, M. (1972). Sweetness perception in relation to some textural characteristics of hydrocolloid gels. J. Texture Stud., 3, 173-185.
[42] Majzoobi, M., Ghiasi, F., Habibi, M., Hedayati, S., Farahnaky, A. (2014). Influence of soy protein isolate on the quality of batter and sponge cake. J Food Process Pres., 38, 1164-1170.
[43] Yamin, F.F., Lee, M., Pollak, L.M., White, P.J. (1999). Thermal properties of starch in corn variants isolated after chemical mutagenesis of inbred line B73. Cereal Chem., 76, 175-181.
[44] Zhang, Y., Zeng, H., Wang, Y., Zeng, S., Zheng, B. (2014). Structural characteristics and crystalline properties of lotus seed resistant starch and its prebiotic effects. Food Chem., 155, 311-318.
[45] Lin, J.H., Singh, H., Wen, C.Y., Chang, Y.H. (2011). Partial-degradation and heat-moisture dual modification on the enzymatic resistance and boiling-stable resistant starch content of corn starches. J. Cereal Sci., 54, 83-89.
[46] Song, Y., Jane, J. (2000). Characterization of barley starches of waxy, normal, and high amylose varieties. Carbohydr. Polym., 41, 365-377.
[47] Donovan, J.W., Lorenz, K., Kulp, K. (1983). Differential Scanning Calorimetry of Heat-Moisture. Cereal Chem., 60, 381-387.
[48] Adebowale, K.O., Lawal, O.S. (2003). Microstructure, physicochemical properties and retrogradation behaviour of Mucuna bean (Mucuna pruriens) starch on heat moisture treatments. Food Hydrocoll., 17, 265-272.
[49] Lopez-Rubio, A., Flanagan, B.M., Shrestha, A.K., Gidley, M.J., Gilbert, E.P. (2008). Molecular rearrangement of starch during in vitro digestion: toward a better understanding of enzyme resistant starch formation in processed starches. Biomacromolecules., 9, 1951-1958.
[50] Cheetham, N.W., Tao, L. (1998). Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydr. Polym., 36, 277-284.
[51] Xie, X.S., Liu, Q., Cui, S.W. (2006). Studies on the granular structure of resistant starches (type 4) from normal, high amylose and waxy corn starch citrates. Food Res Int., 39, 332-341.
[52] Chanvrier, H., Uthayakumaran, S., Appelqvist, I.A., Gidley, M.J., Gilbert, E.P., López-Rubio, A. (2007). Influence of storage conditions on the structure, thermal behavior, and formation of enzyme-resistant starch in extruded starches. J Agric Food Chem., 55, 9883-9890.
[53] Luckett, C.R., Wang, Y.J. (2012). Effects of β-amylolysis on the resistant starch formation of debranched corn starches. J Agric Food Chem., 60, 4751-4757.
[54] Gonzalez-Soto, R.A., Mora-Escobedo, R., Hernandez-Sanchez, H., Sanchez-Rivera, M., Bello-Perez, L.A. (2007). The influence of time and storage temperature on resistant starch formation from autoclaved debranched banana starch. Food Res Int., 40, 304-310.
[55] Miao, M., Jiang, B., Zhang, T. (2009). Effect of pullulanase debranching and recrystallization on structure and digestibility of waxy maize starch. Carbohydr. Polym., 76, 214-221.
[56] Bird, A.R., Lopez-Rubio, A., Shrestha, A.K., Gidley, M.J. (2009). Resistant starch in vitro and in vivo: Factors determining yield, structure, and physiological relevance, in: Kasapis, S., Norton, I.T., Johan, B. (Eds.), Modern biopolymer science, Academic Press, pp 449-510.
[57] Russell, P.L., Berry, C.S., Greenwell, P. (1989). Characterisation of resistant starch from wheat and maize. J. Cereal Sci., 9, 1-15.
[58] Siljeström, M., Eliasson, A.C., Björck, I. (1989). Characterization of resistant starch from autoclaved wheat starch. Starch‐Stärke., 41, 147-151.
[59] Shi, M.M., Gao, Q.Y. (2011). Physicochemical properties, structure and in vitro digestion of resistant starch from waxy rice starch. Carbohydr. Polym., 84, 1151-1157.
[60] Shamai, K., Bianco-Peled, H., Shimoni, E. (2003). Polymorphism of resistant starch type III. Carbohydr. Polym., 54, 363-369.
[61] Hibi, Y., Matsumoto, T., Hagiwara, S. (1993). Effect of high pressure on the crystalline structure of various starch granules. Cereal Chem., 70, 671-671.
[62] Stute, R., Klingler, R.W., Boguslawski, S., Eshtiaghi, M.N., Knorr, D. (1996). Effects of high pressures treatment on starches. Starch‐Stärke., 48, 399-408.
[63] Katopo, H., Song, Y., Jane, J.L. (2002). Effect and mechanism of ultrahigh hydrostatic pressure on the structure and properties of starches. Carbohydr. Polym., 47, 233-244.
[64] Bauer, B.A., Wiehle, T., Knorr, D. (2005). Impact of high hydrostatic pressure treatment on the resistant starch content of wheat starch. Starch‐Stärke., 57, 124-133.
[65] French, D. (1984). Organization of starch granules, in: Whistler, R.L., BeMiller, J.N., Paschall, E.F. (Eds.), Starch: Chemistry and Technology (Second Edition). Academic Press, pp 183-247.
[66] Hasjim, J., Jane, J.L. (2009). Production of Resistant Starch by Extrusion Cooking of Acid‐Modified Normal‐Maize Starch. J. Food Sci., 74, 556-562.
[67] Godet, M.C., Bouchet, B., Colonna, P., Gallant, D.J., Buleon, A. (1996). Crystalline Amylose‐Fatty Acid Complexes: Morphology and Crystal Thickness. J. Food Sci., 61, 1196-1201.
[68] Shrestha, A.K., Lopez-Rubio, A., Blazek, J., Gilbert, E.P., Gidley, M.J.) 2010). Enzyme resistance and structural organization in extruded high amylose maize starch. Carbohydr. Polym., 80, 699-710.