[1] Potter, D., et al. (2007). Phylogeny and classification of Rosaceae. Plant Syst. Evol., 266, 5-43.
[2] Yousefi, A.R., Niakousari, M., Moradi, M. (2013). Microwave assisted hot air drying of papaya (Carica papaya L.) pretreated in osmotic solution. African J. Agric. Res., 8, 3229-3235.
[3] Nowak, D., Lewicki P.P.,(2004). Infrared drying of apple slices. Innov. Sci.Eng. Technol., 5, 353-360.
[4] Doymaz, I. (2012). Drying of pomegranate seeds using infrared radiation. Food Sci. Biotechnol., 21, 1269-1275.
[5] Yousefi, A.R., Ghasemian, N., Salari, A. (2017). Infrared drying kinetics study of lime slices using hybrid GMDH-neural networks. Innov. Food Technol., 5, 91-105.
[6] Hebbar, H.U., Viahwanathan, K.H., Ramesh, M.N. (2004). Development ofcombined infrared and hot air dryer forvegetables. J. Food Eng., 65,557-563.
[7] Pokham, K., Meeso, N., Soponronnarit, S., Siriamornpun, S. (2012). Modeling of combined far-infrared radiation and drying of a ring shap-pineapple with/without shrinkage. Food Bioprod.Process, 90, 155-164.
[8] Niamnuy, M., Poomsa-ad N, Devahastin S. (2012). Kinietic modeling infrared drying conversion/degradation of isoflavones during infrared drying of soybean. Food Chem., 133, 946-952.
[9] Bi, J., Chen, Q., Zhou, Y., Liu, X., Wu, X., Chen, R. (2014). Optimization of short-and medium-wave infrared drying and quality evalution of jujube powder. Food Bioprocess Tech., 7, 2375-2387.
[10] Ziaforoughi, A., Yousefi, A.R., Razavi, S.M.A. (2016). A Comparative Modeling Study of Quince Infrared Drying and Evaluation of Quality Parameters. Int. J. Food Eng., 12, 901-910.
[11] Yousefi, A.R., Asadi, V., Nassiri, S.M., Niakousari, M., Khodabakhsh Aghdam, Sh. (2012). Comparison of mathematical and neural network models in the estimation of papaya fruit moisture content. Philipp. J. Agric. Sci., 95, 192-198.
[12] Yousefi, A. R., Razavi, S.M.A. (2016). Modeling of glucose release from native and modified wheat starch gels during in vitro gastrointestinal digestion using artificial intelligence methods. Int. J.Biol. Macromol., 97, 752-760.
[13] Yousefi, A.R. (2017). Estimation of papaw (Carica papaw L.) moisture content using adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithm-artificial neural network (GA-ANN). Iran. Food Sci. Technol. Res. J., 12, 767-779.
[14] Salehi, F., Gohari Ardabili, A., Nemati, A., Ltifi Drab, A. (2017). Modeling of strawberry drying process using infrared dryer by genetic algorithm–artificial neural network method. Iran. J. Food Sci. Technol., 69, 105-114.
[15] Yousefi, A.R., Ghasemian, N. (2017). Prediction of papaw moisture ratio during hot air-drying: GMDH vs. mathematical modeling. Int. Food Res. J., 24, 2347-2352.
[16] Crank, J.(1975).The mathematics of diffusion (2nd ed.). Oxford, UK: Clarendon Press.
[17] Simal, S., Mulet, A., Tarrazo, J., Rosello, C. (1996). Drying models for green peas. Food Chem., 55, 121-128.
[18] Vergara, F., Amezaga, E., Barcenas, M.E., Welti, J.(1997). Analysis of the drying processes of osmotically dehydrated apple using the characteristic curve model. Drying Technol., 15, 949-963.
[19] Haghi, A.K., Amanifard, N. (2008). Analysis of heat and mass transfer during microwave drying of food products. Brazil. J. Chem. Eng., 25, 491-501.
[20] Kaymak-Ertekin, F. (2002). Drying and rehydrating kinetics of green and red peppers. J. Food Sci., 67, 168–175.
[21] Sogi, D.S., Shivhare, U.S., Garg, S.K., Bawa, A.S. (2003). Water sorption isotherms and drying characteristics of tomato seeds. Biosys. Eng., 84: 297–301.
[22] Doymaz, I. (2007). The kinetics of forced convective air-drying of pumpkin slices. J. Food Eng., 79, 243-248.
[23] Zomorodian, A., Moradi, M. (2010). Mathematical modeling of forced convection thin layer solar drying for cuminum cyminum. J. Agric. Sci. Technol., 12, 401-408.
[24] Thorat, I.D., Mohapatra, D., Sutar, R., Kapdi, S., Jagtap, D.D. (2012). Mathematical modeling and experimental study on thin-layer vacuum drying of ginger (Zingiber Officinale R.) slices. Food Bioprocess Technol., 5, 1379-1383.
[25] Akpinar, E.K., Bicer, Y. (2006). Mathematical modeling and experimental study on thin layer drying of strawberry. Int. J. Food Eng., 2.
[26] Doymaz, I. (2012). Drying of pomegranate seeds using infrared radiation. Food Sci. Biotechnol., 21, 1269-1275.
[27] Bala, B.K., Ashraf, M.A., Udidin, M.A., Janjai, S. (2005). Experimental and neural network prediction of the performance of a solar tunnel drier for drying jackfruit bulbs and leather. J. Food Process Eng., 28, 552-566.
[28] Kerdpiboon, S., Kerr, W.L., Devahastin, S. (2006). Neural network prediction of physical property changes of dried carrot as a function of fractal dimension and moisture content. Food Res. Int., 39, 1110-1118.
[29] Madamba, P.S., Driscoll, R.H., Buckle, K.A. (1996). The thin-layer drying characteristics of garlic slices. J.Food Eng., 29, 75-97.
[30] Kaleemullah, S., Kailappanm, R. (2005). Drying kinetics of red chillies in a rotary dryer. Biosyst Eng., 92, 15-23.
[31]Sacilik, K., Keskin,R.andElicin, A.K. (2006). Mathematical modelling of solar tunnel drying of thin layer organic tomato. J. Food Eng., 73, 231-238.
[32] Park, K.J., Vohnikova, Z., Brod, F.P.R. (2002). Evaluation of drying parameters and desorption isotherms of garden mint leaves (Mentha crispa L.). J.Food Eng., 51, 193-199.