[1] Rhim, J., Ng, P. (2007). Natural biopolymer-based nanocomposite films for packaging applications. Crit. Rev. Food Sci. Nutr., 47(4), 411-43.
[2]Ketnawa, S., Benjakul, S., Martínez-Alvarez, O., Rawdkuen, S. (2017). Fish skin gelatin hydrolysates produced by visceral peptidase and bovine trypsin: Bioactivity and stability. Food Chem., 215, 383-390.
[3] Mahjoorian, A., Mortazavi, S. A., Tavakolipour, H., Motamedzadegan, A., Askari, B. (2013). Rheological properties of skin gelatin of Beluga Sturgeon (Huso huso) from The Caspian Sea. Eur. J. Biol. Res., 4(7), 227-23.
[4] Sánchez-González, L., Cháfer, M., Chiralt, A., González-Martínez, C.(2010).Physical properties of edible chitosan films containing bergamot essential oil and their inhibitory action on Penicillium italicum. Carbohyd polym., 82(2), 277-283.
[5]Aider, M., (2010), Chitosan application for active bio-based films production and potential in the food industry: Review, LWT-Food Sci. Technol., 43(6), 837-842.
[6] Abdollahi, M., Rezaei, M., Farzi, G.( 2012). A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan. J. Food Eng., 111(2), 343-350.
[7] Ojagh, S. M., Rezaei, M., Razavi, S. H. Hosseini, S. M. H., (2010), Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water, Food Chem.,122(1), 161-166
[8] Rui, L., Xie, M., Hu, B., Zhou, L., Yin, D., Zeng, X. (2017). A comparative study on chitosan/gelatin composite films with conjugated or incorporated gallic acid. Carbohyd Polym., 173, 473-481.
[9] Arora, A., Padua, G. (2009). Review: Nanocomposites in Food Packaging. Journal of Food Science, 75(1), 43 [8] Azeredo, H. 2009. Nanocomposites for food packaging applications. Food Res. Int., 42(9), 1240-1253
[10] Azeredo, H. (2009). Nanocomposites for food packaging applications. Food Res. Int., 42(9), 1240-1253.
[11] Kam, W. Y. J., Mirhosseini, H., Abas, F., Hussain, N., Hedayatnia, S., Chong, H. L. F. (2018). Antioxidant activity enhancement of biodegradable film as active packaging utilizing crude extract from durian leaf waste. Food Control., 90, 66-72
[12]ASTM. (2002). Standard Test Method for Tensile Properties of Thin Plastic Sheeting. Annual book of ASTM. Philadelphia, PA: American Society for Testing and Material., D 882-02.
[13]ASTM. (2010).Standard Test Methods for Water Vapor Transmission of Materials. Annual book of ASTM. Philadelphia, PA: American Society for Testing and Materia., Designation: E96/E96. 730-739
[14] Lavorgna, M., Piscitelli, F., Mangiacapra, P., and Buonocore, G. G. (2010). Study of the combined effect of both clay and glycerol plasticizer on the properties of chitosan films. Carbohyd Polym., 82(2), 291-298.
[15] Hanani, Z. N., Roos, Y. H., Kerry, J. P. (2014). Use and application of gelatin as potential biodegradable packaging materials for food products. Int. J. Biol. Macromo., 71, 94-102.
[16]da Trindade Alfaro, A., Fonseca, G. G., Prentice-Hernández, C. (2013). Enhancement of functional properties of wami tilapia (Oreochromis urolepis hornorum) skin gelatin at different pH values. Food
Bioprocess Tech., 6(8), 2118-2127.
[17] Srinivasa, P. C., Ramesh, M. N., Tharanathan, R. N. (2007). Effect of plasticizers and fatty acids on mechanical and permeability characteristics of chitosan films. Food Hydrocoll., 21(7), 1113-1122.
[18] Cussler, E., Hughes, S., Ward III, W., Aris, R. (1988). Barrier membranes. J. Membrane Sci., 38(2), 161-174.
[19] Ferreira, A. R., Torres, C. A., Freitas, F., Sevrin, C., Grandfils, C., Reis, M. A., Coelhoso, I. M. (2016). Development and characterization of bilayer films of FucoPol and chitosan. Carbohyd polym., 147, 8-15.
[20]Kerch, G., Zicans, J., Meri, R. M.. (2010). The effect of chitosan oligosaccharides on bread staling. J. Cereal Sci., 52(3), 491-495.
[21] Silva-Castro, I., Martín-Ramos, P., Matei, P. M., Fernandes-Correa, M., Hernández-Navarro, S., Martín-Gill, J. (2017). Eco‐Friendly Nanocomposites of Chitosan with Natural Extracts, Antimicrobial Agents, and Nanometals. Handbook of Composites from Renewable Materials, Nanocomposites: Advanced Applications., 8, 35.
[22] Qiao, C., Ma, X., Zhang, J., Yao, J. (2017). Molecular interactions in gelatin/chitosan composite films. Food Chem., 235, 45-50.
[23] Mohammadi, R., Mohammadifar, M. A., Rouhi, M., Kariminejad, M., Mortazavian, A. M., Sadeghi, E., Hasanvand, S. (2018). Physico-mechanical and structural properties of eggshell membrane gelatin-chitosan blend edible films. Int. J. Biol. Macromo., 107, 406-412.
[24] Gómez-Guillén, M. C., Giménez, B., López-Caballero, M. A., Montero, M. P.( 2011). Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll., 25(8), 1813-1827.
[25] Atef, M., Rezaei, M., Behrooz, R., (2015), Characterization of physical, mechanical, and antibacterial properties of agar-cellulose bionanocomposite films incorporated with savory essential oil, Food Hydrocoll., 45, 150-157.
[26] Garcı́a, M. A., Pinotti, A., Martino, M. N. Zaritzky, N. E., (2004), Characterization of composite hydrocolloid films, Carbohyd Polym., 56(3), 339-345.
[27]Muyonga, J., Cole, C. G., Duodu, K. (2004). Fourier transform infrared(FTIR)spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus). Food Chem., 86, 325–332.
[28]Pereda, M., Ponce, A. G., Marcovich, N. E., Ruseckaite, R. A., Martucci, J. F. (2011). Chitosan–gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocoll., 25, 1372–1381.