[1] Wang, F.Q., Li, P., Zhang, J.P., Wang, A.Q., Wei, Q. (2011). pH-sensitive magnetic alginate-chitosan beads for albendazole delivery. Pharm. Dev. Technol., 16, 228–36.
[2] Norton, I.T., Frith, W.J. (2001). Microstructure design in mixed biopolymer composites. Food Hydrocolloids, 15, 543–553.
[3] López-Franco, Y., Higuera-Ciapara, I., Goycoolea, F. M., Wang, W. (2009). Other exudates: tragancanth, karaya, mesquite gum and larchwood arabinogalactan, in: Philips, G.O., Williams, P.A. (Eds.), Handbook of Hydrocolloids, Woodhead publishing Ltd., New Delhi, pp 495–534.
[4] Anderson, D.M.W., Grant, D.A.D. (1988). The chemical characterization of some Astragalus gum exudates. Food Hydrocolloids, 2, 417–423.
[5] Ranjbar-Mohammadi, M., Bahrami, S.H., Joghataei, M.T. (2013). Fabrication of novel nanofiber scaffolds from gum tragacanth/poly(vinyl alcohol) for wound dressing application: In vitro evaluation and antibacterial properties. Mater. Sci. Eng., C, 33, 4935–4943.
[6] Niknia, N., Kadkhodaee, R. (2017). Factors affecting microstructure, physicochemical and textural properties of a novel Gum tragacanth-PVA blend cryogel. Carbohydr. Polym., 155, 475-482.
[7] Niknia, N., Kadkhodaee, R. (2017). Gum tragacanth-polyvinyl alcohol cryogel and xerogel blends for oral delivery of silymarin: Structural characterization and mucoadhesive property. Carbohydr. Polym., 177, 315–323.
[8] Bottomley, R.C., Evans, M.T.A., Parkinson, C.J. (1990). Whey proteins, in: Harris, P (Ed), Food gels, Elsevier Science Publisher Ltd., Essex, pp 435-466.
[9] Hongsprabhas, P., Barbut, S. (1997). Ca2+-Induced cold gelation of whey protein isolate: effect of two-stage gelation. Food Res. Int., 30, 523–527.
[10] Duval, S., Chung, C., McClements, D.J. (2015). Protein-Polysaccharide Hydrogel Particles Formed by Biopolymer Phase Separation. Food Biophys., 10, 334–341.
[11] Kim, H., Decker, E., Mcclements, D.J. (2006). Preparation of multiple emulsions based on thermodynamic incompatibility of heat-denatured whey protein and pectin solutions. Food Hydrocolloids, 20, 586–595.
[12] Turgeon, S.L., Beaulieu, M. (2001). Improvement and modification of whey protein gel texture using polysaccharides. Food Hydrocolloids, 15, 583–591.
[13] Bryant, C.M., McClements, D.J. (2000). Influence of xanthan gum on physical characteristics of heat-denatured whey protein solutions and gels. Food Hydrocolloids, 14, 383–390.
[14] Chung, C., Degner, B., McClements, D.J. (2013). Creating novel food textures: Modifying rheology of starch granule suspensions by cold-set whey protein gelation. LWT - Food Sci. Technol., 54, 336–345.
[15] Dixit, N., Baboota, S., Kohli, K., Ahmad, S., Ali, J. (2007). Silymarin: A review of pharmacological aspects and bioavailability enhancement approaches. Indian J. Pharmacol., 39, 172-179.
[16] Grishechko, L.I., Amaral-Labat, G., Szczurek, A., Fierro, V., Kuznetsov, B.N., Celzard, A. (2013). Lignin-phenol-formaldehyde aerogels and cryogels. Microporous Mesoporous Mater., 168, 19–29.
[17] Müller, C.M.O., Yamashita, F., Laurindo, J.B. (2008). Evaluation of the effects of glycerol and sorbitol concentration and water activity on the water barrier properties of cassava starch films through a solubility approach. Carbohydr. Polym., 72, 82–87.
[18] Amaral-Labat, G., Szczurek, A., Fierro, V., Masson, E., Pizzi, A., Celzard, A. (2012). Impact of depressurizing rate on the porosity of aerogels. Microporous Mesoporous Mater., 152, 240–245.
[19] Swyngedau, S., Peleg, M. (1992). Characterization and prediction of the compressive stress-strain relationship of layered arrays of spongy baked goods. Cereal Chem., 69, 217–221.
[20] Salvador, A., Varela, P., Sanz, T., Fiszman, S.M. (2009). Understanding potato chips crispy texture by simultaneous fracture and acoustic measurements, and sensory analysis. LWT - Food Sci. Technol., 42, 763–767.
[21] Betz, M., García-gonzález, C.A., Subrahmanyam, R.P., Smirnova, I., Kulozik, U. (2012). Preparation of novel whey protein-based aerogels as drug carriers for life science applications. J. Supercrit. Fluids, 72, 111–119.
[22] Panapisal, V., Charoensri, S., Tantituvanont, A. (2012). Formulation of Microemulsion Systems for Dermal Delivery of Silymarin. AAPS PharmSciTech, 13, 389–399.
[23] El-Sherbiny, I.M., Abdel-Mogib, M., Dawidar, A.A.M., Elsayed, A., Smyth, H.D.C. (2011). Biodegradable pH-responsive alginate-poly (lactic-co-glycolic acid) nano/micro hydrogel matrices for oral delivery of silymarin. Carbohydr. Polym., 83, 1345–1354.
[24] Hadjiioannou, T.P., Christian, G.D., Koupparis, M.A., Macheras, P.E. (1993). Quantitative Calculations in Pharmaceutical Practice and Research, VCH Publishers Inc., New York, pp 345-348.
[25] Bourne, D. W. A. (2002). Pharmacokinetics, in: Banker G.S, Rhodes, CT (Eds), Modern Pharmaceutics. 4th ed., Marcel Dekker Inc., New York, pp 67-92.
[26] Higuchi, T. (1963). Mechanism of sustained- action medication. Theoritical analysis of rate of release of solid drugs dispersed in solid matrices, J. Pharm. Sci., 52, 1145–1149.
[27] Jose, S., Fangueiro, J.F., Smitha, J., Cinu, T.A., Chacko, A.J., Premaletha, K., Souto, E.B. (2013). Predictive modeling of insulin release profile from cross-linked chitosan microspheres. Eur. J. Med. Chem., 60, 249–253.
[28] Chen, H.B., Wang, Y.Z., Schiraldi, D.A. (2013). Foam-like materials based on whey protein isolate. Eur. Polym. J., 49, 3387–3391.
[29] Ahmadi, M., Madadlou, A., Saboury, A.A. (2016). Whey protein aerogel as blended with cellulose crystalline particles or loaded with fish oil. Food Chem., 196, 1016–1022.
[30] Wu, Y., Chen, Z., Li, X., Li, M. (2009). Effect of tea polyphenols on the retrogradation of rice starch. Food Res. Int., 42, 221–225.
[31] Eugenia, C., Curran, G. (2017). Evaluation of Whey-protein-isolate edible films containing oregano (Origanum vulgare) essential oil to improve shelf life of cheeses during refrigerated storage. J. Food Sci., 82, 1395-1401.
[32] Blomfeldt, T.O. J., Olsson, R.T., Menon, M., Plackett, D., Johansson, E., Hedenqvist, M.S. (2010). Novel foams based on freeze-dried renewable vital wheat gluten. Macromol. Mater. Eng., 295, 796–801.
[33] Liu, L.S., Liu, C.K., Fishman, M.L., Hicks, K.B. (2007). Composite films from pectin and fish skin gelatin or soybean flour protein. J. Agric. Food Chem., 55, 2349–2355.
[34] Pranoto, Y., Lee, C.M., Park, H.J. (2007). Characterizations of fish gelatin films added with gellan and κ-carrageenan. LWT - Food Sci. Technol., 40, 766–774.
[35] Guerrero, P., Kerry, J.P., De La Caba, K. (2014). FTIR characterization of protein-polysaccharide interactions in extruded blends. Carbohydr. Polym., 111, 598–605.
[36] Eissa, A.S., Puhl, C., Kadla, J.F., Khan, S.A. (2006). Enzymatic cross-linking of beta-lactoglobulin: conformational properties using FTIR spectroscopy. Biomacromolecules, 7, 1707–1713.
[37] Timilsena, Y.P., Wang, B., Adhikari, R., Adhikari, B. (2015). Preparation and characterization of chia seed protein isolate-chia seed gum complex coacervates. Food Hydrocolloids, 52, 554–563.
[38] Hasni, I., Bourassa, P., Hamdani, S., Samson, G., Carpentier, R., Tajmir-Riahi, H.A. (2011). Interaction of milk α- and β-caseins with tea polyphenols. Food Chem., 126, 630–639.
[39] Huang, G.Q., Sun, Y.T., Xiao, J.X., Yang, J. (2012). Complex coacervation of soybean protein isolate and chitosan. Food Chem., 135, 534–539.
[40] Espinosa-Andrews, H., Sandoval-Castilla, O., Vázquez-Torres, H., Vernon-Carter, E.J., Lobato-Calleros, C. (2010). Determination of the gum Arabic–chitosan interactions by Fourier Transform Infrared Spectroscopy and characterization of the microstructure and rheological features of their coacervates. Carbohydr. Polym., 79, 541–546.
[41] O’Neill, G.J., Jacquier, J.C., Mukhopadhya, A., Egan, T., O’Sullivan, M., Sweeney, T., O’Riordan, E.D. (2015). In vitro and in vivo evaluation of whey protein hydrogels for oral delivery of riboflavin. J. Funct. Foods, 19, 512–521.
[42] Gunasekaran, S., Xiao, L., Ould Eleya, M.M. (2006). Whey protein concentrate hydrogels as bioactive carriers. J. Appl. Polym. Sci., 99, 2470–2476.
[43] Selmer, I., Kleemann, C., Kulozik, U., Heinrich, S., Smirnova, I. (2015). Development of egg white protein aerogels as new matrix material for microencapsulation in food. J. Supercrit. Fluids, 106, 42–49.