بررسی ریخت شناسی نانوالیاف سلولز استات در سیستم های حلال تک و چند جزئی جهت تولید نانوحاملهای سیکلودکسترین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه نانو فناوری مواد غذایی ،پژوهشکده علوم و صنایع غذایی، مشهد

2 استادیار، گروه نانوفناوری مواد غذایی ، پژوهشکده علوم و صنایع غذایی، مشهد

چکیده

ویژگی های مثبت نانوالیاف از جمله نسبت سطح به حجم بالا، انعطاف پذیری مطلوب در گروههای عاملی سطحی و عملکرد مناسب مکانیکی، همراه با جایدهی سیکلودکسترینها می تواند زمینه لازم را برای ایجاد تولید نانوحاملهای غذادارویی مناسب فراهم سازد. الکتروریسی روشی مناسب برای تولید نانوالیاف است که به دلیل سهولت اجرا و عدم استفاده از فرایند حرارتی به عنوان یکی از مطلوبترین انتخابها در این خصوص شناخته می شود. عوامل مختلفی در تولید الیاف مناسب با استفاده از روش الکتروریسی مؤثر هستند که یکی از مهمترین آنها انتخاب حلال مناسب است. در بررسی حاضر، شرایط انتخاب حلال مطلوب جهت ریسیدن پلیمر سلولز استات به همراه سیکلودکسترین، از طریق بررسی اثر سیستم حلالهای تک جزئی دی متیل استامید، دی متیل فرم آمید و ترکیبات دوتایی آنها با استن شامل استن :دی متیل استامید (2:1) ، استن :دی متیل استامید (1:2) ، استن:دی متیل فرم آمید (2:1) و استن:دی متیل فرم آمید (1:2) بر ریخت شناسی و اندازه قطر الیاف مورد مطالعه قرار گرفته است. جایگیری سیکلودکسترین درون ساختار نانوالیاف با استفاده از تکنیک طیف جذبی فنل فتالئین به تنهایی و در مجاورت محلول آبی سیکلودکسترین بررسی شد. نتایج نشان داد رفتار رئولوژیکی محلولهای پلیمری در سیستم حلال دوتایی استن-دی متیل فرم آمید، غیر نیوتنی از نوع شبه پلاستیک می باشد. استفاده از سیستم حلال دوتایی استن – دی متیل فرم آمید (1:2)، غلظت 20 درصد محلول سلولز استات و 2 درصد سیکلودکسترین، تحت فرایند ریسندگی ولتاژ (25 کیلو ولت )، دبی جریان (5/1 میلی لیتر بر ساعت) و فاصله نوک سوزن تا جمع کننده (150 میلی متر)، شرایط مطلوب برای تولید نانوحاملهای خوراکی سیکلودکسترین می باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Cellulose Acetate Nanofibers Morphology in Single and Binary Solvent Systems for Production of Edible Cyclodexterin Nanocarriers

نویسندگان [English]

  • Behrouz Ghorani 1
  • Bahareh Emadzadeh 2
1 Department of Food Nanotechnology, Research Institute of Food Science & Technology
2 Department of Food Nanotechnology,Research Institute of Food Science and Technology (RIFST)
چکیده [English]

The positive characteristics of nanofibers such as high surface area-to-volume ratio, appropriate flexibility of the functional group and superior mechanical performance, in cooperation with placing the cyclodexterins would provide an appropriate platform for the production of neutroceutical nanocarriers. Electrospinning as an easy and non-thermal method is a suitable choice in nanofiber production. Different factors influence the nanofiber production of which the solvent selection is of great importance. In this paper we aim to study the optimized solvent system for electrospinning of cellulose acetate polymer and cyclodexterin. In this way, the influence of single and binary solvent systems i.e. Dimethylformamide (DMF), Dimethylacetamide (DMAc), acetone: DMAc (1:2), acetone: DMAc (2:1), acetone: DMF (1:2), and acetone: DMF (2:1), on the morphology and the diameter of nanofibers was investigated. The embedment of cyclodexterin in the nanofiber structure was studied using the phenolphthalein absorption technique. The polymeric solutions showed a non- Newtonian pseudoplastic behaviour. The application of binary solvent system of acetone: DMF (2:1) at 20% (w/v) cellulose acetate polymer, 2% (w/v) cyclodexterin, under the processing condition 25 kV, 1.5 ml/h, and the needle to collector distance of 150 mm is suggested for the production of cyclodexterin nanocarriers.

کلیدواژه‌ها [English]

  • Cellulose acetate
  • Cyclodexterin
  • Electrospinning
  • Nanocarrier
[1] Ghorani,B.,Tucker,N.(2015). Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food. Hydrocoll., 51, 227-240.
[2] Ghorani,B.,Russell,S.J.,Goswami,P. (2013). Controlled Morphology and Mechanical Characterisation of Electrospun Cellulose Acetate Fibre Webs. Int.Polym.Sci., 1-12.
[3] Ramakrishna, S. (2005).An introduction to electrospinning and nanofibers, 4th ed., World Scientific Publishing Co,Singapure, pp 1-396.
[4] Anu Bhushani, J., Anandharamakrishnan, C. (2014). Electrospinning and electrospraying techniques: Potential food based applications. Trends.Food.Sci.Tech., 38(1), 21-33.
[5] Reneker, D.H., Yarin,A.L. , Fong,H. ,Koombhongse,S. (2000). Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J.Appl.Phys.,87(9), 4531-4547.
[6] Yarin, A., Koombhongse ,S. Reneker,D. (2001) . Bending instability in electrospinning of nanofibers. J. Appl.Phys., 89(5),3018-3026.
[7]  Tan, S.H., Inai,R., Kotaki,M., Ramakrishna,S. (2005). Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polym., 46(16), 6128-6134.
[8] Koombhongse, S., Liu,W., Reneker,D.H. (2001). Flat polymer ribbons and other shapes by electrospinning. J. Polym. Sci. Part B Polym. Phys., 39(21), 2598-2606.
[9]  Fong, H., Chun,I., Reneker,D.H. (1999). Beaded nanofibers formed during electrospinning. Polym., 40(16),4585-4592.
[10] Theron, S.A., Zussman,E.,Yarin,A.L. (2004). Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polym., 45(6), 2017-2030.
[11] Wannatong, L., Sirivat,A., Supaphol,P. (2004). Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene. Polym Int., 53(11), 1851-1859.
[12]Yang, Q., Li,Z., Hong,Y., Zhao,Y., Qiu,S.,  Wang,C., Wei,Y. (2004). Influence of solvents on the formation of ultrathin uniform poly(vinyl pyrrolidone) nanofibers with electrospinning. J. Polym. Sci. Part B Polym. Phys., 42(20), 3721-3726.
[13] Mendes, A. C., Stephansen, K. ,Chronakis, I. S. (2017). Electrospinning of food proteins and polysaccharides. Food Hydrocoll., 68, 53-68.
[14] Del Valle, E. M. M. (2004). Cyclodextrins and their uses: a review. Process Biochem., 39, 1033-1046.
[15] Crini, G.( 2014). Review: A History of Cyclodextrins. Chem. Rev., 114, 10940-10975.
[16] Fischer, S., Thümmler, K., Volkert, B., Hettrich, K., Schmidt, I., Fischer, K. (2008). Properties and Applications of Cellulose Acetate. Macromol Symp., 262(1), 89-96.
[17]  Son, W. K., Youk, J. H., Lee, T. S., Park, W. H. (2004). Preparation of Antimicrobial Ultrafine Cellulose Acetate Fibers with Silver Nanoparticles. Macromol Rapid Commun., 25(18), 1632-1637.
[18]  Tungprapa, S., Jangchud, I., Supaphol, P. (2007). Release characteristics of four model drugs from drug-loaded electrospun cellulose acetate fiber mats. Polym., 48(17), 5030-5041.
[19]  Taepaiboon, P., Rungsardthong, U., Supaphol, P. (2007). Vitamin-loaded electrospun cellulose acetate nanofiber mats as transdermal and dermal therapeutic agents of vitamin A acid and vitamin E. Eur. J. Pharm. Biopharm., 67(2), 387-397.
[20]  Suwantong, O., Opanasopit, P., Ruktanonchai, U., Supaphol, P. (2007). Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polym., 48(26), 7546-7557.
[21] Wongsasulak, S., Patapeejumruswong, M., Weiss, J., Supaphol, P., Yoovidhya, T. (2010). Electrospinning of food-grade nanofibers from cellulose acetate and egg albumen blends. J.Food. Eng., 98(3), 370-376.
[22] Ghorani, B., Tucker, N., Yoshikawa, M. (2015). Approaches for the assembly of molecularly imprinted electrospun nanofibre membranes and consequent use in selected target recognition. Food .Res. Int., 78, 448-464.
[23] Miri, M. A., Movaffagh, J., Najafi, M. B. H., Najafi, M. N., Ghorani, B., Koocheki, A. (2016). Optimization of elecrospinning process of zein using central composite design. Fiber. Polym., 17(5), 769-777.
[24] Zhou,W., He.J., Cui,S., Gao,W.(2011). Studies of Electrospun Cellulose Acetate Nanofibrous Membranes.The.open.Mater.Sci.J., 51-55.
[25] Torres-Giner, S., Gimenez, E., & Lagaron, J. M. (2008). Characterization of the morphology and thermal properties of Zein Prolamine nanostructures obtained by electrospinning. Food .Hydrocoll., 22(4), 601-614.
[26] Ghorani,B.(2012).Production and properties of electrospun webs for therapeutic applications. PhD thesis, University of Leeds, UK.
[27] Ghasemi-Mobarakeh, L., Semnani, D., Morshed, M. (2007). A novel method for porosity measurement of various surface layers of nanofibers mat using image analysis for tissue engineering applications. J. Appl. Polym. Sci., 106(4), 2536-2542.
[28]  Eichhorn, S. J., Sampson, W. W. (2010). Relationships between specific surface area and pore size in electrospun polymer fibre networks. J. R. Soc. Interface., 7(45), 641-649.
[29] Uyar, T., Havelund, R., Nur, Y., Hacaloglu, J., Besenbacher, F., Kingshott, P. (2009). Molecular filters based on cyclodextrin functionalized electrospun fibers. J.Membr.Sci., 332(1–2), 129-137.
[31] Liu, H., Hsieh, Y.-L. (2002). Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J. Polym. Sci. Part B Polym. Phys., 40(18), 2119-2129.
[32] Han, S. O., Youk, J. H., Min, K. D., Kang, Y. O.,  Park, W. H. (2008). Electrospinning of cellulose acetate nanofibers using a mixed solvent of acetic acid/water: Effects of solvent composition on the fiber diameter. Mater. Lett., 62(4–5), 759-762.
[33] Tungprapa, S., Puangparn, T., Weerasombut, M., Jangchud, I., Fakum, P., Semongkhol, S., Supaphol, P. (2007). Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter. Cellulose., 14(6), 563-575.
[34] Shenoy, S. L., Bates, W. D., Frisch, H. L., Wnek, G. E. (2005). Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit. Polym., 46(10), 3372-3384.
[35] Kuwabara, T., Takamura, M., Matsushita, A., Ikeda, H., Nakamura, A., Ueno, A., Toda, F. (1998). Phenolphthalein-Modified β-Cyclodextrin as a Molecule-Responsive Colorless-to-Color Change Indicator. J. Org. Chem., 63(24), 8729-8735.