[1] Williams, P. A., Phillips, G. O. (2000). Introduction to food hydrocolloids, in: Williams, P. A., Phillips, G. O. (Eds.) Handbook of hydrocolloids,CRC Press, New York, pp1–19.
[2] Meier, H., Reid, J. S. G. (1982). Reserve polysaccharides other than starch in higher plants, in: Loewus, F. A., Tanner, W. (Eds.) Encyclopaedia of Plant Physiology, Springer, Berlin, pp 418–471.
[3] Estévez, A. M., Saenz, C., Hurtado, M. L., Escobar, B., Espinoza, S., Suarez, C. (2004). Extraction methods and some physical properties of mesquite (Prosopis chilensis Stuntz) seed gum. J. Sci. Food Agr., 84, 1487–1492.
[4] Stephen, A. M., Churms, S. C. (1995). Introduction, in: Stephen, A. M., Churms, S. C. (Eds.), Food polysaccharides and their application, CRC Press, New York, pp 1–18.
[5] Brummer, Y., Cui, W., Wang, W. (2003). Extraction, purification and physicochemical characterization of fenugreek gum. Food Hydrocolloid., 17, 229–236.
[6] Robinson, G., Ross-Murphy, S. B., Morris, E. R. (1982). Viscosity–molecular weight relationship, intrinsic chain flexibility and dynamic solution properties of guargalactomannan. Carbohyd. Res., 107, 17–32.
[7] Pauly, M., Freis, O., Pauly, G. (1999). Galactomannan and xyloglucan: bioactive polysaccharides. Cosmet. Toiletries., 114, 65–78.
[8] Valenga, F., Lucysyn, N., Ono, L., de Souza, C. F., Lubambo, A., Sierakowski, M. (2011)
. Galactomannan-Alginate synergism applied in albumin encapsulation.
In:
Macromolecular Symposia. (pp. 99-106) WILEY‐VCH Verlag.
[9] Cerqueira, M.A., Bourbon, A.L., Pinheiro, A.C., Martins, J.T., Souza, B.W.S., Teixeira, J.A., Vicent, A.A. (2011). Galactomannans use in the development of edible films/coatings for food applications. Trends Food Sci. Tech., 22, 662-671.
[10] Kapoor, V. P., Pandey, K., Khanna, M., Dwiredi, A. K., Singh, S. (1999). Pharmaceutical applications of the galactomannan from the seeds of Cassia javanica Linn. Trends Carbohyd. Chem., 5, 61–69.
[11] Cruz Alcedo, G. E. (1999). Production and characterisation of prosopis seed galactomannan, PhD Thesis, Swiss Federation Institute of Technology, Zurich. Food Eng., 77, 295–30.
[12] Jiang. J.X., Zhu, L.W., Zhang, W.M., Sun, R.C. (2007). Characterization of galactomannan gum from fenugreek (Trigonella foenum-graecum) seeds and its rheological properties. Int. J. Polym. Mater., 56, 1145–1154.
[13] Srichamroen, A., Vasanthan, T., Ooraikul, B., Basu, T. K. (2005). Isolation of galactomannan from fenugreek seeds. In: 2005 IFT Annual Meeting. (pp. 245-254 ) New Orleans, Louisiana, USA.
[14] Andrews, P., Hough, L., Jones, J. K. N. (1952). Mannose-containing polysaccharides. Part 1. The galactomannan of fenugreek seed (Trigonella foenum-graecum). J. Am. Chem. Soc., 74, 2744–2750.
[15] Tiwari, A. K. (2004). Antioxidants: new-generation therapeutic base for treatment of polygenic disorders. Curr. Sci. India, 86, 1092-1102.
[16] Cadenas, E., Davies, J. A. (2000). Mitochondrial free radical generation, oxidative stress, and aging. Free Radical Bio. Med., 29, 222-230.
[17] Sarma, A. D., Anisur, R. M., Ghosh, A. K. (2010). Free radicals and their role in different clinical conditions: an overview. Int. J. Pharma Sci. Res., 1, 185-192.
[18] Witschi, H. P. (1986). Enhanced tumour development by butylated hydroxytoluene (BHT) in the liver, lung and gastro-intestinal tract. Food Chem. Toxicol., 24, 1127-1130.
[19] Grice, H. C. (1988). Safety evaluation of butylated hydroxyanisole from the perspective of effects on forestomach and oesophageal squamous epithelium. Food Chem. Toxicol., 26, 717-723.
[20] Kardošová, A., Machova, E. (2006). Antioxidant activity of medicinal plant polysaccharides. Fitoterapia., 77, 367-373.
[21] Wang, Q., Sun, Y., Yang, B., Wang, Z., Liu, Y., Cao, Q., Kuang, H. (2014). Optimization of polysaccharides extraction from seeds of Pharbitis nil and its antioxidant activity. Carbohyd. polym., 102, 460– 466.
[22] Ge, Q., Huang, J., Mao, J. W., Gong, J. Y., Zhou, Y. F. and Huang, J. X. (2014). Optimization of total polysaccharide extraction from Herba lophatheri using RSM and antioxidant activities. Int. J. Biol. Macromol., 67, 37-42.
[23] Zou, C., Du, Y. M., Li, Y., Yang, J. H., Feng, T., Zhang, L., Kennedy, J. F. (2008).
Preparation of lacquer polysaccharide sulfates and their antioxidant activity in vitro.
Carbohyd. Polym., 73, 322–331.
[24] Srinivasan, K. (2006). Fenugreek (Trigonella foenum-graecum): A review of health beneficial physiological effects. Food Rev. Int., 22, 203–224.
[25] Hannan, J. M. A., Ali, L., Rokeya, B., Khaleque, J., Akhter, M., Flatt, P. R., Abdel-Wahab, Y. H. A. (2007). Soluble dietary fibre fraction of Trigonella foenum-graecum (fenugreek) seed improves glucose homeostasis in animal models of type 1 and type 2 diabetes by delaying carbohydrate digestion and absorption, and enhancing insulin action. Brit. J. Nutr., 97, 514–521.
[26] Amin, A. M., Ahmad, S. A., Yin Yin, Y., Yahaya, N., Ibrahim, N. (2007). Extraction, purification and characterization of durian seed gum. Food Hydrocolloid., 21,273–279.
[27] Cui, W., Mazza, G. (1996). Physicochemical characteristics of flaxseed gum. Food Res. Int., 29, 397-402.
[28] Sav, A. J., Meer, T. A., Fule, R. A., Amin, P. D. (2014). Investigational studies on highly purified fenugreek gum as emulsifying agent. J. Disper. Sci. Technol., 34, 657–662.
[29] Singthong, J., Ningsanond, S., Cui, S. W. (2009). Extraction and physicochemical characterisation of polysaccharide gum from Yanang (Tiliacora triandra) leaves. Food Chem., 114, 1301-1307.
[30] Razavi, S. M. A., Mortazavi, S. A., Matia-Merino, L., Hosseini-Parvar, S. H., Motamedzadegan, A., Khanipour, E. (2009). Optimization study of gum extraction from Basil seeds (Ocimum basilicum L.). Int. J. Food Sci. Tech., 44, 1755- 1762.
[31] AOAC. (1995). Official methods of analysis. Arlington: Association of Official Analytical Chemists.
[32] Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Anal. Chem., 28, 350–356.
[33] Koocheki, A., Taherian, A. R., Razavi, S. M. A., Bostan, A. (2009). Response surface methodology for optimization of extraction yield, viscosity, hue and emulsion stability of mucilage extracted from Lepidium perfoliatum seeds. Food Hydrocolloid., 23, 2369-2379.
[34] Shen, S., Chen, D., Li, X., Li, T., Yuan, M., Zhou, Y., Ding, C. (2014). Optimization of extraction process and antioxidant activity of polysaccharides from leaves of Paris polyphylla. Carbohyd. Polym., 104, 80–86.
[35] Fan, J., Feng, H., Yu, Y., Sun, M., Liu, Y., Li, T., Sun, X., Liu, S., Sun, M. (2017). Antioxidant activities of the polysaccharides of Chuanminshen violaceum. Carbohyd. polym., 157, 629-636.
[36] Benzie, I. F., Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem., 23, 70-76.
[37] Myers, R. H., Montgomery, D. C., Anderson-Cook, C. M. (2016). Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons, New York
[38] Ye, C. L., Jiang, C. J. (2011). Optimization of extraction process of crude polysaccharides from Plantago asiatica L. by response surface methodology. Carbohyd. Polym., 84, 495–502.
[39] Koocheki, A., Mortazavi, S. A., Shahidi, F., Razavi, S. M. A., Taherian, A. R. (2009). Rheological properties of mucilage extracted from Alyssum homolocarpum seed as a new source of thickening agent. J. Food Eng., 91, 490–496.
[40] Jouki, M., Mortazavi, S. A., Yazdi, F. T., Koocheki, A. (2014). Optimization of extraction, antioxidant activity and functional properties of quince seed mucilage by RSM. Int. J. Biol. Macromole., 66, 113-124.
[41] Wu, Y., Cui, S. W., Tang, J., Gu, X. (2007). Optimization of extraction process of crude polysaccharides from boat-fruited sterculia seeds by response surface methodology. Food Chem., 105, 1599–1605.
[42] Karazhiyan, H., Razavi, S. M. A., Phillips, G. O. (2011). Extraction optimization of a hydrocolloid extract from cress seed (Lepidium sativum) using response surface methodology, Food Hydrocolloid., 25, 915-920.
[43] Bendahou, A., Dufresne, A., Kaddami, H., Habibi, Y. (2007). Isolation and structural characterization of hemicelluloses from palm of Phoenix dactylifera L. Carbohyd. Polym., 68, 601-608.
[44] Zhang, X., Chen, J., Mao, M., Guo, H., Dai, Y. (2014). Extraction optimization of the polysaccharide from Adenophorae radix by central composite design. Int. J. Biol. Macromole., 67, 318-322.
[45] Li, P., Zhou, L., Mou, Y., Mao, Z. (2015). Extraction optimization of polysaccharide from Zanthoxylum bungeanum using RSM and its antioxidant activity. Int. J. Biol. macromole., 72, 19-27.
[46] Hammi, K.M., Hammami, M., Rihouey, C., Le Cerf, D., Ksouri, R., Majdoub, H. (2016). Optimization extraction of polysaccharide from Tunisian Zizyphus lotus fruit by response surface methodology: Composition and antioxidant activity. Food Chem., 212, 476-484.
[47]فرهمند، ع.؛ وریدی، م.؛ کوچکی، آ. (1393) تعیین شرایط بهینه استخراج موسیلاژ دانه به به کمک طرح مرکب مرکزی و ارزیابی برخی خصوصیات عملکردی آن. مجموعه مقالات نخستین همایش ملی الکترونیکی دستاوردهای نوین در علوم غذایی، زاهدان.
[48] Garcia-Ochoa, F., Casas, J. A. (1992). Viscosity of locust bean gum solutions. J. Sci. Food and Agri., 59, 97–100.
[49] Koocheki, A., Mortazavi, S. A., Shahidi, F., Razavi, S., Kadkhodaee, R., Milani, J. M. (2010). Optimization of mucilage extraction from Qodume shirazi seed (Alyssum homolocarpum) using response surface methodology. J. Food Process Eng., 33, 861-882.
[50] Bostan, A., Razavi, S. M., Farhoosh, R. (2010). Optimization of hydrocolloid extraction from wild sage seed (Salvia macrosiphon) using response surface. Int. J. Food Prop., 13, 1380-1392.
[51] Amid, B., Mirhosseini, H. (2012). Optimization of aqueous extraction of gum from durian (Durio zibethinus) seed: A potential, low cost source of hydrocolloid. Food Chem., 132, 1258-1268.
[52] Karazhiyan, H., Razavi, S. M. A., Phillips, G. O. (2011). Extraction optimization of a hydrocolloid extract from cress seed (Lepidium sativum) using response surface methodology. Food Hydrocolloid., 25, 915-920.
[53] Chaurasia, M., Chourasia, M. K., Jain, N. K., Jain, A., Soni, V., Gupta, Y., Jain, S. K. (2008). Cross-linked guar gum microspheres: A viable approach for improved delivery of anticancer drugs for the treatment of colorectal cancer. Aaps Pharmscitech., 7, 143.
[54] Glicksman, M. (1982). Food hydrocolloids, CRC Press, New York.
[55] Chen, R., Jin, C., Tong, Z., Lu, J., Tan, L., Tian, L., Chang, Q. (2016). Optimization extraction, characterization and antioxidant activities of pectic polysaccharide from tangerine peels. Carbohyd. Polym., 136, 187-197.
[56] Mazarei, F., Jooyandeh, H., Noshad, M., Hojjati, M. (2017). Polysaccharide of caper (Capparis spinosa L.) leaf: extraction optimization, antioxidant potential and antimicrobial activity. Int. J. Biol. Macromol., 95, 224-231.
[57] Yang, S., Li, Y., Jia, D., Yao, K., Liu, W. (2017). The synergy of Box-Behnken designs on the optimization of polysaccharide extraction from mulberry leaves. Ind. Crop Prod., 99, 70-78.
[58] Quinn, P. J. (1998). Effects of temperature on cell membranes. Symp. Soc. Exp. Biol., 42, 237-258.
[59] Li, J., Ai, L., Hang, F., Ding, S., Liu, Y. (2014). Composition and antioxidant activity of polysaccharides from jujuba by classical and ultrasound extraction. Int. J. Biol. Macromol., 63, 150-153.
[60] Luo, Q. L., Tang, Z. H., Zhang, X. F., Zhong, Y. H., Yao, S. Z., Wang, L. S., Luo, X. (2016). Chemical properties and antioxidant activity of a water-soluble polysaccharide from Dendrobium officinale. Int. J. Biol. Macromol., 89, 219-227.
[61] Guo, L., Zhu, W., Xu, F., Liu, M., Xie, Y., Zhang, J. (2014). Optimized ultrasonic-assisted extraction of polysaccharides from Cyclina sinensis and evaluation of antioxidant activities in vitro. CyTA J. Food, 12, 32-39.
[62] Chen, Y., Xie, M. Y., Nie, S. P., Li, C., Wang, Y. X. (2008). Purification, composition analysis and antioxidant activity of a polysaccharide from the fruiting bodies of Ganoderma atrum. Food Chem., 107, 231-241.
[63] Tan, L. H., Zhang, D., Yu, B., Zhao, S. P., Wang, J. W., Yao, L., Cao, W. G. (2015). Antioxidant activity and optimization of extraction of polysaccharide from the roots of Dipsacus asperoides. Int. J. Biol. Macromol., 81, 332-339.
[64] Li, Q., Yu, N., Wang, Y., Sun, Y., Lu, K., Guan, W. (2013). Extraction optimization of Bruguiera gymnorrhiza polysaccharides with radical scavenging activities. Carbohyd. Polym., 96, 148-155.
[65] Qi, H., Zhang, Q., Zhao, T., Hu, R., Zhang, K. Li, Z. (2006). In vitro antioxidant activity of acetylated and benzoylated derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta). Bioorg. Med. Chem. Lett., 16, 2441-2445.
[66] Li, Q., Yu, N., Wang, Y., Sun, Y., Lu, K., Guan, W. (2002). Study on the multiple mechanisms underlying the reaction between hydroxyl radical and phenolic compounds by qualitative structure and activity relationship. Bioogran. Med. Chem ., 10, 4067-4073.
[67] Jeong, J.B., Seo, E.W., Jeong, H.J. (2009). Effect of extracts from pine needle against oxidative DNA damage and apoptosis induced by hydroxyl radical via antioxidant activity. Food and Chem. Toxic., 47, 2135-2141.
[68] Li, Q., Yu, N., Wang, Y., Sun, Y., Lu, K., Guan, W. (2013). Extraction optimization of Bruguiera gymnorrhiza polysaccharides with radical scavenging activities. Carbohyd. Polym., 96, 148-155.