بهینه‌سازی و بررسی مقایسه‌ای محتوای فنولی ترکیبات زیست فعال استخراج‌شده از برگ گیاه فیجوا (Feijoa sellowiana) به کمک امواج فراصوت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه زنجان

2 استادیار، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه زنجان

چکیده

در این پژوهش به‌منظور بررسی، مدل‌سازی و بهینه‌سازی اثر متغیرهای مستقل فرایند استخراج با حلال به کمک امواج فراصوت شامل شدت امواج فراصوت ( W/cm200/714، 50/1428 و 00/2143)، چرخه کاری (٪50- 75-100 درصد) و دمای استخراج (Cº 30-45-60) بر محتوای فنولی ترکیبات زیست فعال استخراج‌شده از برگ گیاه فیجوا از روش‌شناسی سطح پاسخ بر اساس طرح باکس- بنکن استفاده شد. میزان کل ترکیبات فنولی توسط روش فولین - سیوکالتیو اندازه‌گیری شد. با استفاده از تجزیه‌وتحلیل رگرسیون خطی چندگانه، مدل چندجمله‌ای درجه دوم کامل برای میزان کل ترکیبات فنولی به دست آمد. با استفاده از تکنیک بهینه‌سازی عددی شرایط بهینه به‌صورت W/cm2 34/1749، ٪39/86 و C º 49/32 تعیین شد. فعالیت ضد رادیکالی ترکیبات فنولی به‌دست‌آمده تحت شرایط بهینه با روشهای دی‌فنیل پیکریل هیدرازیل (DPPH) و 2و ´2 آزینوبیس (3 - متیل بنزو تیازولین - 6 - سولفونیک اسید) (ABTS) اندازه‌گیری شد. عصاره ترکیبات زیست‌فعال دارای میزان کل ترکیبات فنولی mg GAE/g 12/0 ± 20/381 و فعالیت ضد رادیکالی ٪10/0 ± 43/81 مهار رادیکال‌های آزاد DPPH و ٪26/0 ± 63/86 مهار رادیکال‌های آزاد ABTS بود. مدل ارائه‌شده برای پیش‌بینی مقدار پاسخ نتیجه بسیار نزدیکی با داده‌های تجربی داشت. تکنیک استخراج با حلال متلاطم جهت بررسی مقایسه‌ای موردمطالعه قرار گرفت که در این تکنیک تأثیر متغیر شدت دور در دامنه rpm50-300 بر میزان کل ترکیبات فنولی مطالعه شد. بر اساس نتایج به‌دست‌آمده، با استفاده از تکنیک حلال متلاطم بالاترین میزان کل ترکیبات فنولی (mg GAE/g 12/0 ± 95/352) درشدت دور rpm 200 به دست آمد. ترکیبات به‌دست‌آمده دارای فعالیت ضد رادیکالی ٪16/0 ± 33/73 مهار رادیکال‌های آزاد DPPH و ٪12/0 ± 20/82 مهار رادیکال‌های آزاد ABTS بودند. با توجه به نتایج بررسی مقایسه‌ای می توان بیان نمود که با استفاده از امواج فراصوت امکان دستیابی به ترکیبات زیست فعال فنولی بیشتر و فعالیت ضد رادیکالی بالاتر در مدت‌زمان کوتاه‌تری وجود دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimization and comparative evaluation of ultrasound-assisted extraction of bioactive phenolic compounds from feijoa (Feijoa sellowiana) leaves

نویسندگان [English]

  • Yasaman Poodi 1
  • Mandana Bimakr 2
  • Ali Ganjloo 2
  • Soheila Zarringhalami 2
1 Department of Food Science and Technology, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
2 Assistant Professor, Department of Food Science and Technology, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
چکیده [English]

In this study, the effect of ultrasound-assisted extraction (UAE) process independent variables including ultrasonic intensity (714.00, 1425.50 and 2143.00 w cm-2), duty cycle (50, 75 and 100%) and extraction temperature (30, 45 and 60 °C) on feijoa leaves bioactive phenolic compounds was investigated and optimized using response surface methodology based on Box-Behnken design. The total phenolic content of extracts was measured using Folin- Ciocalteu method. Quadratic polynomial model was obtained for total phenolic compounds using multiple linear regression analysis. The optimal conditions were determined as 1749.34 W cm-2 ultrasonic intensity, 86.39% duty cycle and 32.49 °C extraction temperature. The radical scavenging activity of phenolic compounds obtained under optimized UAE conditions was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2´-Azinobis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) radical scavenging activity methods. Based on results obtained, the total phenolic compound and radical scavenging activity of extract obtained under optimal conditions were 381.20 ± 0.12 mg GAE/g, 81.43 ± 0.10% of DPPH radical inhibition and 86.63 ± 0.26% of ABTS radical inhibition, respectively. The model obtained for prediction of dependent variable has a good closeness with experimental results. The agitated bed extraction technique was investigated to carry out the comparative evaluation. The effect of agitation intensity (50-300 rpm) on total phenolic content of extracts obtained using this technique was studied. Based on results obtained, the highest value of total phenolic content (352.95 ± 0.12 mg GAE/g) could be achieved using 200 rpm agitation intensity. The radical scavenging activity of extract was 73.33 ± 0.16% of DPPH radical inhibition and 82.20 ± 0.12% of ABTS radical inhibition. According to the results obtained it could be stated that ultrasound-assisted extraction is a promising technique to obtain extracts contain more phenolic compounds and higher radical scavenging activity during short extraction time.

کلیدواژه‌ها [English]

  • Feijoa
  • Ultrasound-assisted extraction
  • Response surface methodology
  • Total phenolic compounds
  • Radical scavenging activity
  • Agitated bed extraction technique
[1] Fu, L., Xu, B.T., Xu, X.R., Gan, R.Y., Zhang, Y., Xia, E.Q., Li, H.B. (2011). Antioxidant capacities and total phenolic contents of 62 fruits. J. Food Chem., 129, 345-350.
[2] Baba, S. A., Malik, S. A. (2015). Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. J. Taibah Univ. Sci., 9, 449-454.‏
[3] Bucic-Kojic, A., Planinic, M., Tomas, S., Bilic, M., Velic, D. (2007). Study of solid-liquid extraction kinetics of total polyphenols from grape seeds. J. Food Eng., 81, 236-242.
[4] Bimakr, M., Russly, A.R., Ganjloo, A. (2015). Antioxidant and antimicrobial potential of polyphenols from foods, in: Preedy, V., (Ed.), Processing and impact on active components in foods.  Elsevier publishing, New York, pp 407-414.
 [5] Dubaa, K.S., Casazzab, A.A., Mohamedc, H.B., Peregob, P., Fiori, L. (2015).  Extraction of polyphenols from grape skins and defatted grape seeds using subcritical water: Experiments and modeling. Food Bioprod. Process., 94, 29-38.
[6] Paleologou, I., Vasiliou, A., Grigorakis, S., Makris, D.P. (2016). Optimisation of a green ultrasound-assisted extraction process for potato peel (Solanum tuberosum) polyphenols using bio-solvents and response surface methodology. J. Biomass Conv. Bioref., 6, 289-299.
[7] Poojary, M.M., Putnik, P., Kovacevic, D.B., Barba, F.J., Lorenzo, J.M., Dias, D.A., Shpigelman, A., 2017. Stability and extraction of bioactive sulfur compounds from Allium genus processed by traditional and innovative technologies. J. Food Comp. Anal., 61, 28-39.
[8] Valenzuela, A., Nieto, S., Cassels, B.K., Speisky, H. (1991). Inhibitory effect of boldine on fish oil oxidation. J. Am. Oil Chem. Soc., 68, 935-937.
[9] Cetin-Karaca, H., Newman, M.C. (2015). Antimicrobial efficacy of plant phenolic compounds against Salmonella and Escherichia Coli. J. Food Bio. Sci., 11, 8-16.   
 [10] Yang, G., Sato, M., Yamaguchi, T., Nakano, T., Xi, Y. (2017). Antioxidant activities of aqueous extract from Stevia rebaudiana stem waste to inhibit fish oil oxidation and identification of its phenolic compounds. J. Food Chem., 232, 379-386.
[11] Romero-Rodriguez, M., Vazquez-Oderiz, M. L., Lopez-Hernandez, J., Simal-Lozano, J. (1994). Composition of babaco, feijoa, passionfruit and tamarillo produced in Galicia (North-west Spain). J. Food Chem., 49, 23-27.
[12] Weston, R. J. (2010). Bioactive products from fruit of the feijoa (Feijoa sellowiana, Myrtaceae): A review. J. Food Chem., 121, 923-926.
[13] Shaw, G. J., Allen, J. M., Yates, M. K. (1989). Volatile flavour constituents in the skin oil from Feijoa sellowiana. J. Phytochem., 28, 1529-1530.
[14] Basile, A., Vuotto, M.L., Violante, U., Sorbo, S., Martone, G., Castaldo-Cobianchi, R. (1997). Antibacterial activity in Actinidia chinensis, Feijoa sellowiana and Aberia caffra. Int. J. Antimicrob. Agents, 8, 199-203.
[15] Beyhan, O., Elmastas, M., Gedikli, F. (2010). Total phenolic compounds and antioxidant capacity of leaf, dry fruit and fresh fruit of feijoa (Acca sellowiana, Myrtaceae). J. Med. Plants Res., 4, 1065-1072.
[16] Vuotto, M. L., Basile, A., Moscatiello, V., Sole, P.D., Castaldo-Cobianchi, R., Laghi, E., Ielpo, M.T.L. (2000). Antimicrobial and antioxidant activities of Feijoa sellowiana fruit. Int. J. Antimicrob. Agr., 13, 197-201.
[17] Sun-Waterhouse, D., Wang, W., Waterhouse, G.I.N., Wadhwa, S.S. (2013). Utilisation potential of feijoa fruit wastes as ingredients for functional foods. Food Bioprocess Tech., 6, 3441-3455.
[18] Bimakr, M., Abdul Rahman, R., Taip, F. S., Adzahan, N. M., Sarker, M. Z. I., Ganjloo, A. (2012). Optimization of ultrasound-assisted extraction of crude oil from winter melon (Benincasa hispida) seed using response surface methodology and evaluation of its antioxidant activity, total phenolic content and fatty acid composition. Molecules, 17, 11748-11762.
[19] Changxing, J., Li, X., Jiao, Y., Jiang, D., zhang, L., Fan, B., Zhang, Q. (2014). Optimization for ultrasound-assisted extraction of polysaccharides with antioxidant activity in vitro from the aerial root of Ficusmicrocrapa. Carbohyd. Polym., 110, 10-17.
[20] Tiwari, B.K. (2015). Ultrasound: A clean, green extraction technology. J. Trends Anal. Chem., 71, 100-109.
[21] Hammi, K. M., Jdey, A., Abdelly, C., Majdoub, H., Ksouri, A. (2015). Optimization of   ultrasound-assisted extraction of antioxidant compounds from Tunisian Zizyphus lotus fruits using response surface methodology. J. Food Chem., 184, 80-89.
[22] Singh, B., Singh, N., Thakur, S., Kaur, A. (2017). Ultrasound assisted extraction of polyphenols and their distribution in whole mung bean, hull and cotyledon. J. Food. Sci. Tech., 54, 921-932.
[23] Deng, J., Xu, Z., Xiang, C.,  Liu, J.,  Zhou, L., Li, T., Yang, Z., Ding,  C. (2017). Comparative evaluation of maceration and ultrasonic-assisted extraction of phenolic compounds from fresh olives. Ultrasonics Sonochem., 37, 328-334.
[24] Jovanovic, A.A., Dordevic, V.B., Zdunic, G.M., Pljevljakusic, D.S., Savikin K.P., Godevac, D.M., Bugarski, B.M. (2017). Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat- and ultrasound-assisted techniques. J. Sep. Purif. Technol., 179, 369-380.
[25] Pradal, D., Vauchel, P., Decossin S., Dhulster, P., Dimitrov, K. (2016).  Kinetics of ultrasound-assisted extraction of antioxidant polyphenols from food by-products: Extraction and energy consumption optimization. Ultrasonics Sonochem., 32, 137-146.
[26] Gonzalez-Centeno, M.R., Comas-Serra, F., Femenia, A., Rossello, C., Simal, S. (2015).  Effect of power ultrasound application on aqueous extraction of phenolic compounds and antioxidant capacity from grape pomace (Vitis vinifera L.): experimental kinetics and modeling.  Ultrasonic Sonochem., 22, 506-514.
[27] Singh Yadav, B., Yadav, B. R., Jatain, M. (2012). Optimization of osmotic dehydration conditions of peach slices in sucrose solution using response surface methodology. J. Food. Sci. Tech., 49, 547-555.
[28] Noshad, M., Mohebbi, M., Shahidi, F., Mortazavi, S.A. (2012). Multi-Objective optimization of osmotic-ultrasonic pretreatments and hot-air drying of quince using response surface methodology. Food Bioprocess Tech., 5, 2098-2110.
[29] Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S., Escaleira, L.A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76, 965-977.‏
[30] Dey, S., Rathod, V. K. (2013). Ultrasound assisted extraction of β-carotene from Spirulina platensis. Ultrasonics Sonochem., 20, 271-276.‏
[31] Bimakr, M., Abdul Rahman, R., Taip, F. S., Adzahan, N. M., Sarker, M. Z. I., Ganjloo, A. (2016). Characterization of valuable compounds from winter melon (Benincasa hispida (thunb.) Cogn.) seeds using supercritical carbon dioxide extraction combined with pressure swing technique. Food Bioprocess Tech., 9, 396-406.
[32] Mandana, B., Russly, A.R., Farah, S.T., Noranizan, M.A., Zaidul, I.S.M., Ali, G.  (2013) Supercritical carbon dioxide extraction of seed oil from winter melon (Benincasa hispida) and its antioxidant activity and fatty acid composition. Molecules, 18, 997-1014.
[33] Kadam, S. U., Tiwari, B. K., Smyth, T. J., O’Donnell, C. P. (2015). Optimization of ultrasound-assisted extraction of bioactive components from brown seaweed Ascophyllum nodosum using response surface methodology. Ultrasonics Sonochem., 23, 308-316.‏
[34] Chemat, F., Rombaut, N., Sicaire, A.G., Meullemiestre, A., Fabiano-Tixier, A.S., Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochem., 34, 540-560.‏
[35] قربانی، م.؛ ابونجمی، م.؛ قربانی جاوید، م.؛ عرب حسینی، ا. )1396) تأثیر شرایط عصاره گیری با امواج فراصوت بر عملکرد و خواص آنتی‌اکسیدانی عصاره گیاه رازیانه . مجله علوم و صنایع غذایی، شماره 67، دوره 14، ص 63-73.
[36] Herrera, M.C., De Castro, M.L. (2004). Ultrasound-assisted extraction for the analysis of phenolic compounds in strawberries. Anal Biochem., 379, 1106-1112.‏
[37] یلمه، م.؛ حبیبی نجفی، م.؛ فرهوش، ر.؛ حسینی، ف. (1395) کاربرد روش سطح پاسخ در بهینه‌سازی شرایط استخراج رنگ از دانه آناتو به کمک امواج فراصوت. مجله  علوم و صنایع غذایی ، شماره 50، دوره 13، ص 41-51.
[38] Shirsath, S.R., Sable, S.S., Gaikwad, S.G., Sonawane, S.H., Saini, D.R., Gogate, P.R. (2017). Intensification of extraction of curcumin from Curcuma Amada using ultrasound assisted approach: Effect of different operating parameters. Ultrasonics Sonochem., 38, 437-445.
[39] Tuncel, N.B., Yilmaz, N. (2015). Optimizing the extraction of phenolics and antioxidants from feijoa (Feijoa sellowiana, Myrtaceae). Food Sci. Technol., 52, 141-150.
[40] Weston, R.J. (2010). Bioactive products from fruit of the feijoa (Feijoa sellowiana, Myrtaceae): a review. Food Chem., 121, 923-926.
[41]Stratil, P., Klejdus, B., Kuban, V. (2007). Determination of phenolic compounds and their antioxidant activity in fruits and cereals. Talanta, 71, 1741-1751.
[42] Boligon, A.A., Brum, T.F., Frohlich, J.K., Froeder, A.L.F., Athayde, M.L. (2012). HPLC/DAD profile and determination of total phenolics, flavonoids, tannins and alkaloids contents of Scutia buxifolia Reissek stem bark. Res. J. Phytochem., 6, 84-91.
[43] Janovik, V., Boligon, A.A., Bandeira, R.V., Athayde, M.L. (2011). HPLC/DAD analysis, determination of total phenolic and flavonoid contents and antioxidant activity from the leaves of Cariniana domestica (Mart) Miers. Res. J. Phytochem., 5, 209-215.
[44] بی مکر، م.؛ گنجلو، ع.؛ زرین قلمی، س.؛, انصاریان، الف. (1396) بهینه‌سازی استخراج ترکیبات باارزش زیست فعال از برگ شاتوت به­روش حلال متلاطم. مجله علوم و صنایع غذایی، شماره 65، دوره 14، ص 343-353.
[45] Hromadkova, Z., Kostalova, Z., Ebringerova, A. (2008). Comparison of conventional and ultrasound-assisted extraction of phenolics-rich heteroxylans from wheat bran. Ultrasonics Sonochem., 15, 1062-1068.‏