[1] Fu, L., Xu, B.T., Xu, X.R., Gan, R.Y., Zhang, Y., Xia, E.Q., Li, H.B. (2011). Antioxidant capacities and total phenolic contents of 62 fruits. J. Food Chem., 129, 345-350.
[2] Baba, S. A., Malik, S. A. (2015). Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. J. Taibah Univ. Sci., 9, 449-454.
[3] Bucic-Kojic, A., Planinic, M., Tomas, S., Bilic, M., Velic, D. (2007). Study of solid-liquid extraction kinetics of total polyphenols from grape seeds. J. Food Eng., 81, 236-242.
[4] Bimakr, M., Russly, A.R., Ganjloo, A. (2015). Antioxidant and antimicrobial potential of polyphenols from foods, in: Preedy, V., (Ed.), Processing and impact on active components in foods. Elsevier publishing, New York, pp 407-414.
[5] Dubaa, K.S., Casazzab, A.A., Mohamedc, H.B., Peregob, P., Fiori, L. (2015). Extraction of polyphenols from grape skins and defatted grape seeds using subcritical water: Experiments and modeling. Food Bioprod. Process., 94, 29-38.
[6] Paleologou, I., Vasiliou, A., Grigorakis, S., Makris, D.P. (2016). Optimisation of a green ultrasound-assisted extraction process for potato peel (Solanum tuberosum) polyphenols using bio-solvents and response surface methodology. J. Biomass Conv. Bioref., 6, 289-299.
[7] Poojary, M.M., Putnik, P., Kovacevic, D.B., Barba, F.J., Lorenzo, J.M., Dias, D.A., Shpigelman, A., 2017. Stability and extraction of bioactive sulfur compounds from Allium genus processed by traditional and innovative technologies. J. Food Comp. Anal., 61, 28-39.
[8] Valenzuela, A., Nieto, S., Cassels, B.K., Speisky, H. (1991). Inhibitory effect of boldine on fish oil oxidation. J. Am. Oil Chem. Soc., 68, 935-937.
[9]
Cetin-Karaca, H., Newman, M.C. (2015). Antimicrobial efficacy of plant phenolic compounds against
Salmonella and
Escherichia Coli.
J. Food Bio. Sci., 11, 8-16.
[10] Yang, G., Sato, M., Yamaguchi, T., Nakano, T., Xi, Y. (2017). Antioxidant activities of aqueous extract from
Stevia rebaudiana stem waste to inhibit fish oil oxidation and identification of its phenolic compounds.
J. Food Chem., 232, 379-386.
[11] Romero-Rodriguez, M., Vazquez-Oderiz, M. L., Lopez-Hernandez, J., Simal-Lozano, J. (1994). Composition of babaco, feijoa, passionfruit and tamarillo produced in Galicia (North-west Spain). J. Food Chem., 49, 23-27.
[12] Weston, R. J. (2010). Bioactive products from fruit of the feijoa (Feijoa sellowiana, Myrtaceae): A review. J. Food Chem., 121, 923-926.
[13] Shaw, G. J., Allen, J. M., Yates, M. K. (1989). Volatile flavour constituents in the skin oil from Feijoa sellowiana. J. Phytochem., 28, 1529-1530.
[14] Basile, A., Vuotto, M.L., Violante, U., Sorbo, S., Martone, G., Castaldo-Cobianchi, R. (1997). Antibacterial activity in Actinidia chinensis, Feijoa sellowiana and Aberia caffra. Int. J. Antimicrob. Agents, 8, 199-203.
[15] Beyhan, O., Elmastas, M., Gedikli, F. (2010). Total phenolic compounds and antioxidant capacity of leaf, dry fruit and fresh fruit of feijoa (Acca sellowiana, Myrtaceae). J. Med. Plants Res., 4, 1065-1072.
[16] Vuotto, M. L., Basile, A., Moscatiello, V., Sole, P.D., Castaldo-Cobianchi, R., Laghi, E., Ielpo, M.T.L. (2000). Antimicrobial and antioxidant activities of Feijoa sellowiana fruit. Int. J. Antimicrob. Agr., 13, 197-201.
[17] Sun-Waterhouse, D., Wang, W., Waterhouse, G.I.N., Wadhwa, S.S. (2013). Utilisation potential of feijoa fruit wastes as ingredients for functional foods. Food Bioprocess Tech., 6, 3441-3455.
[18] Bimakr, M., Abdul Rahman, R., Taip, F. S., Adzahan, N. M., Sarker, M. Z. I., Ganjloo, A. (2012). Optimization of ultrasound-assisted extraction of crude oil from winter melon (Benincasa hispida) seed using response surface methodology and evaluation of its antioxidant activity, total phenolic content and fatty acid composition. Molecules, 17, 11748-11762.
[19] Changxing, J., Li, X., Jiao, Y., Jiang, D., zhang, L., Fan, B., Zhang, Q. (2014). Optimization for ultrasound-assisted extraction of polysaccharides with antioxidant activity in vitro from the aerial root of Ficusmicrocrapa. Carbohyd. Polym., 110, 10-17.
[20] Tiwari, B.K. (2015). Ultrasound: A clean, green extraction technology. J. Trends Anal. Chem., 71, 100-109.
[21] Hammi, K. M., Jdey, A., Abdelly, C., Majdoub, H., Ksouri, A. (2015). Optimization of ultrasound-assisted extraction of antioxidant compounds from Tunisian Zizyphus lotus fruits using response surface methodology. J. Food Chem., 184, 80-89.
[22] Singh, B., Singh, N., Thakur, S., Kaur, A. (2017). Ultrasound assisted extraction of polyphenols and their distribution in whole mung bean, hull and cotyledon. J. Food. Sci. Tech., 54, 921-932.
[23] Deng,
J., Xu,
Z., Xiang,
C., Liu,
J., Zhou, L., Li,
T., Yang, Z., Ding, C. (2017). Comparative evaluation of maceration and ultrasonic-assisted extraction of phenolic compounds from fresh olives.
Ultrasonics Sonochem., 37, 328-334.
[24] Jovanovic, A.A., Dordevic, V.B., Zdunic, G.M., Pljevljakusic, D.S., Savikin K.P., Godevac, D.M., Bugarski, B.M. (2017). Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat- and ultrasound-assisted techniques. J. Sep. Purif. Technol., 179, 369-380.
[25] Pradal, D., Vauchel, P., Decossin S., Dhulster, P., Dimitrov, K. (2016). Kinetics of ultrasound-assisted extraction of antioxidant polyphenols from food by-products: Extraction and energy consumption optimization. Ultrasonics Sonochem., 32, 137-146.
[26] Gonzalez-Centeno, M.R., Comas-Serra, F., Femenia, A., Rossello, C., Simal, S. (2015). Effect of power ultrasound application on aqueous extraction of phenolic compounds and antioxidant capacity from grape pomace (Vitis vinifera L.): experimental kinetics and modeling. Ultrasonic Sonochem., 22, 506-514.
[27] Singh Yadav, B., Yadav, B. R., Jatain, M. (2012). Optimization of osmotic dehydration conditions of peach slices in sucrose solution using response surface methodology. J. Food. Sci. Tech., 49, 547-555.
[28] Noshad, M., Mohebbi, M., Shahidi, F., Mortazavi, S.A. (2012). Multi-Objective optimization of osmotic-ultrasonic pretreatments and hot-air drying of quince using response surface methodology. Food Bioprocess Tech., 5, 2098-2110.
[29] Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S., Escaleira, L.A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76, 965-977.
[30] Dey, S., Rathod, V. K. (2013). Ultrasound assisted extraction of β-carotene from Spirulina platensis. Ultrasonics Sonochem., 20, 271-276.
[31] Bimakr, M., Abdul Rahman, R., Taip, F. S., Adzahan, N. M., Sarker, M. Z. I., Ganjloo, A. (2016). Characterization of valuable compounds from winter melon (Benincasa hispida (thunb.) Cogn.) seeds using supercritical carbon dioxide extraction combined with pressure swing technique. Food Bioprocess Tech., 9, 396-406.
[32] Mandana, B., Russly, A.R., Farah, S.T., Noranizan, M.A., Zaidul, I.S.M., Ali, G. (2013) Supercritical carbon dioxide extraction of seed oil from winter melon (Benincasa hispida) and its antioxidant activity and fatty acid composition. Molecules, 18, 997-1014.
[33] Kadam, S. U., Tiwari, B. K., Smyth, T. J., O’Donnell, C. P. (2015). Optimization of ultrasound-assisted extraction of bioactive components from brown seaweed Ascophyllum nodosum using response surface methodology. Ultrasonics Sonochem., 23, 308-316.
[34] Chemat, F., Rombaut, N., Sicaire, A.G., Meullemiestre, A., Fabiano-Tixier, A.S., Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochem., 34, 540-560.
[35] قربانی، م.؛ ابونجمی، م.؛ قربانی جاوید، م.؛ عرب حسینی، ا. )1396) تأثیر شرایط عصاره گیری با امواج فراصوت بر عملکرد و خواص آنتیاکسیدانی عصاره گیاه رازیانه . مجله علوم و صنایع غذایی، شماره 67، دوره 14، ص 63-73.
[36] Herrera, M.C., De Castro, M.L. (2004). Ultrasound-assisted extraction for the analysis of phenolic compounds in strawberries. Anal Biochem., 379, 1106-1112.
[37] یلمه، م.؛ حبیبی نجفی، م.؛ فرهوش، ر.؛ حسینی، ف. (1395) کاربرد روش سطح پاسخ در بهینهسازی شرایط استخراج رنگ از دانه آناتو به کمک امواج فراصوت. مجله علوم و صنایع غذایی ، شماره 50، دوره 13، ص 41-51.
[38] Shirsath, S.R., Sable, S.S., Gaikwad, S.G., Sonawane, S.H., Saini, D.R., Gogate, P.R. (2017). Intensification of extraction of curcumin from Curcuma Amada using ultrasound assisted approach: Effect of different operating parameters. Ultrasonics Sonochem., 38, 437-445.
[39] Tuncel, N.B., Yilmaz, N. (2015). Optimizing the extraction of phenolics and antioxidants from feijoa (Feijoa sellowiana, Myrtaceae). Food Sci. Technol., 52, 141-150.
[40] Weston, R.J. (2010). Bioactive products from fruit of the feijoa (Feijoa sellowiana, Myrtaceae): a review. Food Chem., 121, 923-926.
[41]Stratil, P., Klejdus, B., Kuban, V. (2007). Determination of phenolic compounds and their antioxidant activity in fruits and cereals. Talanta, 71, 1741-1751.
[42] Boligon, A.A., Brum, T.F., Frohlich, J.K., Froeder, A.L.F., Athayde, M.L. (2012). HPLC/DAD profile and determination of total phenolics, flavonoids, tannins and alkaloids contents of Scutia buxifolia Reissek stem bark. Res. J. Phytochem., 6, 84-91.
[43] Janovik, V., Boligon, A.A., Bandeira, R.V., Athayde, M.L. (2011). HPLC/DAD analysis, determination of total phenolic and flavonoid contents and antioxidant activity from the leaves of Cariniana domestica (Mart) Miers. Res. J. Phytochem., 5, 209-215.
[44] بی مکر، م.؛ گنجلو، ع.؛ زرین قلمی، س.؛, انصاریان، الف. (1396) بهینهسازی استخراج ترکیبات باارزش زیست فعال از برگ شاتوت بهروش حلال متلاطم. مجله علوم و صنایع غذایی، شماره 65، دوره 14، ص 343-353.
[45] Hromadkova, Z., Kostalova, Z., Ebringerova, A. (2008). Comparison of conventional and ultrasound-assisted extraction of phenolics-rich heteroxylans from wheat bran. Ultrasonics Sonochem., 15, 1062-1068.