[1] Martins, S., Aguilar, C. N., de la Garza-Rodriguez, I., Mussatto, S. I., Teixeira, J. A. (2010). Kinetic study of nordihydroguaiaretic acid recovery from Larrea tridentata by microwave-assisted extraction. J. Chem. Technol. Biotechnol., 85, 1142–1147.
[2] Wang, L., Weller, C. L. (2006). Recent advances in extraction of nutraceuticals from plants. Trend Food Sci. Tech., 17, 300–312.
[3] Cortazar, E., Bartolomé, L., Delgado, A., Etxebarria, N., Fernández, L. A., Usobiaga, A., et al. (2005). Optimisation of microwave-assisted extraction for the determination of nonylphenols and phthalate esters in sediment samples and comparison with pressurised solvent extraction. Anal Chim. Acta. 534, 247–254.
[4] Martins, E. S., Silva, D., Da Silva, R., Gomes, E. (2002). Solid state production of thermostable pectinases from thermophilic Thermoascus aurantiacus. Process Biochem. 37, 949–954.
[5] Nigam, P. S. (2009) Production of bioactive secondary metabolites, in: Nigam, P. S., Pandey, A. (Eds.), Biotechnology for agro-industrial residues utilization, 1st ed. Springer, Netherlands, pp 129–145.
[6] Mohamed, S. A., Saleh, R. M., Kabli, S. A., Al-Garni, S. M. (In press) Influence of solid state fermentation by Trichoderma spp. on solubility, phenolic content, antioxidant, and antimicrobial activities of commercial turmeric.
Biosci. Biotech. Biochem. DOI:
10.1080/09168451.2015.1136879
[7] Couto, S. R., Sanromán, M. Ά. (2006). Application of solid-state fermentation to food industry-A review. J. Food Eng. 76, 291–302
[8] Robledo, A., Aguilera-Carbó, A., Rodríguez, R., Martinez, J. L., Garza, Y., Aguilar, C. N. (2008). Ellagic acid production by Aspergillus niger in solid state fermentation of pomegranate residues. J. Ind. Microbiol. Biotech. 35, 507–513.
[9] Randhir, R., Shetty, K. (2007). Mung beans processed by solid-state bioconversion improves phenolic content and functionality relevant for diabetes and ulcer management. Innovations Food Sci. Emerg. Technol. 8, 197–204.
[10] Pandey, A. (2003). Solid state fermentation. Biochem. Eng. J. 13, 81–84.
[11] Raghavarao, K. S. M. S., Ranganathan, T. V., Karanth, N. G. (2003). Some engineering aspects of solidstate fermentation. Biochem. Eng. J. 13, 127–135.
[12] Vattem, D. A., Shetty, K. (2003). Ellagic acid production and phenolic antioxidant activity in cranberry pomace (Vaccinium macrocarpon) mediated by Lentinus edodes using a solid-state system. Process Biochem. 39, 367–379.
[13] Dey, T. B., Kuhad, R. C. (2014). Enhanced production and extraction of phenolic compounds from wheat by solid-state fermentation with Rhizopus oryzae RCK2012. Biotechnol. Rep. 4, 120–127.
[14] Emmons, C. L., Peterson, D. M. (2001). Antioxidant activity and phenolic content of oat as affected by cultivar and lacation. Crop Sci. 41, 1676–1681.
[15] Lee, J., Durst, R. W., Wrolstad, R. E. (2005) Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 88, 1269–1278.
[16] Brand-Williams, W., Cuvelier, Mem Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28, 25–30.
[17] James, C. S. (1995). Analytical Chemistry of Foods, United States: Springer.
[18] Vattem, D. A., Shetty, K. (2003). Ellagic acid production and phenolic antioxidant activity in cranberry pomace (Vaccinium macrocarpon) mediated by Lentinus edodes using a solid-state system. Process Biochem. 39, 367–379.
[19] de Man, J. M. (1999). Principals of Food Chemistry, Maryland, USA: Aspen Publishers, Inc.
[20] Rodriguez-Saona, L., Giusti, M., Wrolstad, R. (1999). Color and pigment stability of red radish and red-fleshed potato anthocyanins in juice model systems. J. Food Sci. 64, 451–456.
[21] Hubbermann, E. M. (2005) Functional properties of anthocyanin concentrates and the influence of physicochemical parameters and food additives on the color and stability of isolated anthocyanins in food matrices. Uelvesbṻll, Germany: Der Sndre Verlage.
[22] Rein, M. (2005) Copigmentation reactions and color stability of berry anthocyanins. University of Helsinki. Department of Applied Chemistry and Microbiology. 88 + 34 pp.
[23] García-Viguera, C., Zafrilla,P., Artés, F., Romero,F., Abellán,P., Tomás-Barberán, F. A. (1998) Colour and anthocyanin stability of red raspberry jam. J. Sci. Food Agric. 78, 565–573.