[1] Wu, D., Sun, D.W. (2013). Color measurements by computer vision for food quality control-a review. Food Sci. Technol. 29 (1), 5-20.
[2] Mendoza, F., & Aguilera, J.M. (2004). Application of image analysis for classification of ripening bananas. J. Food Sci, 69, 471-477.
[3] Larrain, R.E., Schaefer, D.M., Reed, J.D. (2008). Use of digital images to estimate CIE color coordinates of beef. Food Res. Int, 41, 380-385.
[4] Yagiz, Y., Balaban, M.O., Kristinsson, H.G., Welt, B.A., & Marshall, M.R. (2009). Comparison of Minolta colorimeter and machine vision system in measuring color of irradiated Atlantic salmon. J. Sci. Food Agric. 89, 728-730.
[5] Martin, M.L.G.M., Ji, W., Luo, R., Hutchings, J., Heredia, F.J. (2007). Measuring color appearance of red wines. Food Qual. Prefer. 18, 862-871.
[6] Fernandez-Vazquez, R., Stinco, C.M., Melendez-Martinez, A.J., Heredia, F.J., & Vicario, I.M. (2011). Visual and instrumental evaluation of orange juice color: a consumers' preference study. J. Sens. Stud, 26, 436-444.
[7] Shafiee, S., Minaei, S., Moghaddam-Charkari, N., & Barzegar, M. (2014). Honey characterization using computer vision system and artificial neural networks. Food Chemistry, 159, 143–150.
[8] Oliveira, E. M, de., Leme, D. S., Barbosa, B. H. G., Rodarte, M. P., Pereira, R. G. F. A. (2016). A computer vision system for coffee beans classification based on computational intelligence techniques. JFE, 171, 22-27.
[9] Sanz-Uribe, J.R., Ramos-Giraldo, P.J., Oliveros-Tascon, C.E. (2008). Algorithm to identify maturation stages of coffee fruits. In: World Congress on Engineering and Computer Science, WCECS '08. Advances in Electrical and Electronics Engineering - IAENG Special Edition of the, 167-174.
[10] Sliwinska, M., Wisniewska, P., Dymerski, T., Namiesnik, J & Wardencki. W. (2014). Food Analysis Using Artificial Senses, J. Agric. Food Chem, 62, 1423−1448.
[11] Chen, Q., Zhang, Z., Pan, W., Ouyang, Q., Li, H., Urmila, K., & Zhao, J. (2015). Recent developments of green analytical techniques in analysis of tea’s quality and nutrition. Trends in Food Science & Technology, 43, 63-82.
[12] Kiani, S., Minaei, S. (2016a). Potential Application of Machine Vision Technology to Saffron (Crocus sativus L) Quality Characterization, Food Chemistry, 212, 392-394.
[13] CIE. (1986). Colorimetry, second edition. CIE Central Bureau Kegelgasse Publication, Wien, Austria. 27 (15), A-1030.
[14] Du, C., Sun, D. (2005). Comparison of three methods for classification of pizza topping using different color spaces transformations. Journal of Food Engineering, 68, 277–287.
[15] Leon, K., Mery, D., Pedreschi, F., Le on, J. (2006). Color measurement in L*a*b* units from RGB digital images. Food Res. Int. 39, 1084-1091.
[16] Kiani, S., Minaei, S., & Ayyari, M. (2016b). A non-destructive intelligent technique for color-based saffron quality characterization using computer vision. 5th International Congress on Medicinal Plants, 18-19 May, 2016, Esfahan, Iran.
[17] Marquardt, D. (1963). An algorithm for least squares estimation of non-linear parameters, J. Soc. Indust. Appl. Math. 11, 431–441.
[18] Patel, H.K. (2014). The Electronic Nose: Artificial Olfaction Technology, Springer.
[19] Scott, S.M., James, D., Ali, Z. (2007). Data analysis for electronic nose systems, Microchim. Acta, 156, 183–207.
[20] Brainard, D. H. (2003). Color appearance and color difference specification. In S. K. Shevell (Ed.), the science of color, second edition, 191–216. Amsterdam: Elsevier Science Ltd.