[1] مظاهری، م.، سالاری، ا.، ریاضی، ع.، حیدری ا. و قاسمی م. 1385. تلخی زدایی و تولید مارمالاد و نوشیدنی از ضایعات حاصل از فرآیند تولید آبلیمو. مجله پژوهشهای علوم و صنایع غذایی ایران، 2، 60-53.
[2] Adam, K.L. (2004). Food Dehydration Options. US: National Sustainable Agriculture Information Service.
Available online: www.attra. Ncat.org.
[3] Ziaforoughi, A., Yousefi, A.R., Razavi, S.M.A. (2016). A Comparative Modeling Study of Quince Infrared Drying and Evaluation of Quality Parameters. Int. J. Food Eng., 12, 901-910.
[4] Nowak, D., Lewicki, P.P. (2004). Infrared drying of apple slices. Innov. Food Sci. Emerg. Technol., 5, 353–360.
[5] Doymaz, I. (2012). Drying of pomegranate seeds using infrared radiation. Food Sci. Biotechnol., 21, 1269-1275.
[6] Pokham, K., Meeso, N., Soponronnarit, S., Siriamornpun, S. (2012). Modeling of combined far-infrared radiation and drying of a ring shap-pineapple with/without shrinkage. Food Bioprod. process, 90, 155-164.
[7] Niamnuy, M., Poomsa-ad N, Devahastin S. (2012). Kinietic modeling infrared drying conversion/degradation of isoflavones during infrared drying of soybean. Food Chem., 133, 946-952.
[8] Bi, J., Chen, Q., Zhou, Y., Liu, X., Wu, X., Chen, R. (2014). Optimization of short-and medium-wave infrared drying and quality evalution of jujube powder. Food Bioprocess Tech., 7, 2375-2387.
[9] Kamiński, W., Tomczak, E., Strumill, P. (1998). Neurocomputing approaches to modelling of drying process dynamics. Drying Technol., 16, 967-992.
[10] Movagharnejad, K., Nikzad, M. (2007). Modeling of tomato drying using artificial neural network. Comput Electron Agric., 59, 78-85.
[11] Momenzadeh, L., Zomorodian, A., Mowla, D. (2011). Experimental and theoretical investigation of shelled corn drying in a microwave-assisted fluidized bed dryer using Artificial Neural Network. Food Bioprod. process, 89, 15-21.
[12] Nikbakht, A.M., Motevali, A., Minaei, S. (2014). Energy and exergy investigation of microwave assisted thin-layer drying of pomegranate arils using artificial neural networks and response surface methodology. Saudi Society Agric Sci., 13, 81-91.
[13] Nariman-Zadeh, N., Jamali, A. (2007). Pareto genetic design of GMDH-type neural networks for nonlinear systems. In: Proc. of the International Workshop on InductiVe Modelling, Drchal J, Koutnik J, (eds.). Czech Technical University: Prague, Czech Republic, pp. 96-103, Citeseer.
[14] Ghanadzadeh, H., Ganji, M., Fallahi, S. (2012). Mathematical model of liquid–liquid equilibrium for a ternary system using the GMDH-type neural network and genetic algorithm. Appl. Math. Model., 36, 4096-4105.
[15] Abdolrahimi, S., Nasernejad, B., Pazuki, G. (2014). Prediction of partition coefficients of alkaloids in ionic liquids based aqueous biphasic systems using hybrid group method of data handling (GMDH) neural network. J. Mol. Liq., 191, 79-84.
[16] Atashrouz, S., Pazuki, G., Kakhki, S.S. (2015). A GMDH-type neural network for prediction of water activity in glycol and Poly (ethylene glycol) solutions. J. Mol. Liq., 202, 95-100.
[17] Yousefi, A.R., Ghasemian, N. (2016). Prediction of papaya fruit moisture content using hybrid GMDH - neural network modeling during thin layer drying process.
Iranian Food Sci. Technol. Res. J., 11, 747-757.
[18] Darvishi, H., Khoshtaghaza, M.H., Minaei, S. (2014). Drying kinetics and colour change of lemon slices. Int. Agrophys., 28, 1-6.
[19] Torki-Harchegani, M., Ghasemi-Varnamkhasti, M., Ghanbarian, D., Sadeghi, M., Tohidi, M. (2016). Dehydration characteristics and mathematical modelling of lemon slices drying undergoing oven treatment. Heat Mass Transfer, DOI 10.1007/s00231-015-1546-y.
[20] Ghasemian, N., Nourmoradi, H. (2016). Experimental Study and Mathematical Modeling of Propane-SCR-NOx Using Group Method of Data Handling and Artificial Neural Network. Int. J. Chem. React. Eng.,14, 559-569.
[21] Crank, J., 1975, The mathematics of diffusion (2nd ed.). Oxford, UK: Clarendon Press.
[22] Simal, S., Mulet, A., Tarrazo, J., Rosello, C. (1996). Drying models for green peas. Food Chem., 55, 121–128.
[23] Abe, T., Afzal, T.M. (1997). Thin-layer infrared radiation drying of rough rice. J. Agric. Eng. Res., 67, 289-297.
[24] Hebbar, H.U., Rastogi, N.K. (2001). Mass transfer during infrared drying of cashew kernel. Food Eng., 47, 1-5.
[25] Thorat, I.D., Mohapatra, D., Sutar, R., Kapdi, S., Jagtap, D.D. (2012). Mathematical modeling and experimental study on thin-layer vacuum drying of ginger (Zingiber Officinale R.) slices. Food Bioprocess Technol., 5, 1379-1383.
[26] Kingsly, A., Singh, D. (2007). Drying kinetics of pomegranate arils. Food Eng., 79, 741-744.
[27] Sharma, G., Verma, R., Pathare, P. (2005). Mathematical modeling of infrared radiation thin layer drying of onion slices. Food Eng., 71, 282-286.
[28] Yousefi, A.R., Asadi, V., Nassiri, S.M., Niakousari, M., Khodabakhsh Aghdam, S. (2012). Comparison of mathematical and neural network models in the estimation of papaya fruit moisture content. Philippine J. Agric. Sci., 95, 192-198.
[29] Madamba, P.S., Driscoll, R.H., Buckle, K.A. (1996). The thin-layer drying characteristics of garlic slices. Food Eng., 29, 75-97.
[30] Kaleemullah, S., Kailappanm, R. (2005). Drying kinetics of red chillies in a rotary dryer. Biosyst. Eng., 92, 15-23.
[31] Doymaz, I. (2007). The kinetics of forced convective air-drying of pumpkin slices. Food Eng., 79, 243-248.
[32] Kaymak-Ertekin, F. (2002). Drying and rehydrating kinetics of green and red peppers. J. Food Sci., 67, 168-175.
[33] Park, K.J., Vohnikova, Z., Brod, F.P.R. (2002). Evaluation of drying parameters and desorption isotherms of garden mint leaves (Mentha crispa L.). Food Eng., 51, 193-199.