مدل‌سازی سینتیک خشک کردن برش‌های لیموترش به روش تابش مادون قرمز با استفاده از شبکه‌های عصبی GMDH هیبریدی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی شیمی، دانشکده فنی و مهندسی، دانشگاه بناب

2 استادیار، گروه بهداشت مواد غذایی و آبزیان، دانشکده دامپزشکی، دانشگاه فردوسی مشهد

چکیده

مدل‌سازی سینتیک خشک کردن، یکی از راه‌های مناسب برای کنترل زمان و شرایط خشک کردن می‌باشد. در این تحقیق، سینتیک خشک‌ کردن برش‌های لیموترش با ضخامت‌های 5 و 10 میلی‌متر در یک خشک‌کن مادون قرمز آزمایشگاهی و در دماهای 100، 125، 150 و 175 درجه سانتی­گراد بررسی شد. برای مدل‌سازی سینتیک خشک کردن برش‌های لیموترش، از 7 مدل ریاضی رایج خشک‌کردن لایه نازک استفاده شد. هم‌چنین  برای این بررسی، از روش شبکه‌های عصبی GMDH هیبریدی چهار لایه (یک لایه ورودی، دو لایه مخفی و یک لایه خروجی) استفاده گردید. نتایج نشان داد که شبکه عصبی GMDH هیبریدی بهینه، دارای دقت بالایی در تخمین محتوای رطوبتی برش‌های لیموترش طی فرایند خشک کردن بوده که این دقت      (9909/0R2 =) حدود دقت مدل پیج به‌عنوان بهترین مدل ریاضی به‌کار برده شده بود (9950/0-9793/0R2 =). بررسی میزان حساسیت محتوای رطوبتی نسبت به متغیرهای ورودی نشان داد که مقدار رطوبت طی خشک‌شدن مادون قرمز به زمان خشک شدن بیش از سایر متغیرها حساس است (45 درصد). افزایش دما از 100 به 175 درجه سانتی‌گراد سبب افزایش ضریب نفوذ موثر (Deff) از 10-10× 90/9 به m2/s 9-10× 76/2  گردید. مقدار انرژی فعال‌سازی برای برش‌های لیموترش kJ/mol 61/87 به‌دست آمد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Infrared drying kinetics study of lime slices using hybrid GMDH-neural networks

نویسندگان [English]

  • Yousefi Ali Reza 1
  • Naser Ghasemian 1
  • Amir Salari 2
1 Department of Chemical Engineering, Faculty of Engineering, University of Bonab, Bonab, Iran
2 Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

Modeling of drying kinetics is one of the most appropriate methods to control the time or any condition related to the drying process. In this research, the drying process of Persian lime slices with 5 and 10 mm thicknesses was conducted at four temperature levels of 100, 125, 150 and 175 °C in an experimental infrared dryer. For modeling of the drying kinetics of lime slices, 7 well-known thin-layer models were used. In addition, for this modeling, a hybrid GMDH-neural network with four layers (one input, two hidden and one output layer) was applied. The results demonstrated that the optimized GMDH model was completely efficient to predict the moisture content of lime slices during infrared drying process (R2 = 0.9909). This efficiency was almost similar to the observed efficiency for the Page model as the best mathematical model used (R2 = 0.9793-0.9950). It was found that the sensitivity to the drying time was more than other inputs, so that sensitivity of this parameter was near 45%. Increase in temperature resulted in an increase in the effective diffusivity coefficient (Deff), so that this coefficient reached to 2.76×10-9 at 175 °C from the initial value of 9.90×10-10 at 100 °C. The activation energy (Ea) calculated for the lime slices was 87.61 kJ/mol.

کلیدواژه‌ها [English]

  • Lime slices
  • GMDH-Neural network
  • Infrared drying
  • Mathematical modeling
[1] مظاهری، م.، سالاری، ا.، ریاضی، ع.، حیدری ا. و قاسمی م. 1385. تلخی زدایی و تولید مارمالاد و نوشیدنی از ضایعات حاصل از فرآیند تولید آبلیمو. مجله پژوهش­های علوم و صنایع غذایی ایران، 2، 60-53.
[2] Adam, K.L. (2004). Food Dehydration Options. US: National Sustainable Agriculture Information Service.
 Available online: www.attra. Ncat.org.
[3] Ziaforoughi, A., Yousefi, A.R., Razavi, S.M.A. (2016). A Comparative Modeling Study of Quince Infrared Drying and Evaluation of Quality Parameters. Int. J. Food Eng., 12, 901-910.
[4] Nowak, D., Lewicki, P.P. (2004). Infrared drying of apple slices. Innov. Food Sci. Emerg. Technol., 5, 353–360.
[5] Doymaz, I. (2012). Drying of pomegranate seeds using infrared radiation. Food Sci. Biotechnol., 21, 1269-1275.
[6] Pokham, K., Meeso, N., Soponronnarit, S., Siriamornpun, S. (2012). Modeling of combined far-infrared radiation and drying of a ring shap-pineapple with/without shrinkage. Food Bioprod. process, 90, 155-164.
[7] Niamnuy, M., Poomsa-ad N, Devahastin S. (2012). Kinietic modeling infrared drying conversion/degradation of isoflavones during infrared drying of soybean. Food Chem., 133, 946-952.
[8] Bi, J., Chen, Q., Zhou, Y., Liu, X., Wu, X., Chen, R. (2014). Optimization of short-and medium-wave infrared drying and quality evalution of jujube powder. Food Bioprocess Tech., 7, 2375-2387.
[9] Kamiński, W., Tomczak, E., Strumill, P. (1998). Neurocomputing approaches to modelling of drying process dynamics. Drying Technol., 16, 967-992.
[10] Movagharnejad, K., Nikzad, M. (2007). Modeling of tomato drying using artificial neural network. Comput Electron Agric., 59, 78-85.
[11] Momenzadeh, L., Zomorodian, A., Mowla, D. (2011). Experimental and theoretical investigation of shelled corn drying in a microwave-assisted fluidized bed dryer using Artificial Neural Network. Food Bioprod. process, 89, 15-21.
[12] Nikbakht, A.M., Motevali, A., Minaei, S. (2014). Energy and exergy investigation of microwave assisted thin-layer drying of pomegranate arils using artificial neural networks and response surface methodology. Saudi Society Agric Sci., 13, 81-91.
[13] Nariman-Zadeh, N., Jamali, A. (2007). Pareto genetic design of GMDH-type neural networks for nonlinear systems. In: Proc. of the International Workshop on InductiVe Modelling, Drchal J, Koutnik J, (eds.). Czech Technical University: Prague, Czech Republic,  pp. 96-103, Citeseer.
[14] Ghanadzadeh, H., Ganji, M., Fallahi, S. (2012). Mathematical model of liquid–liquid equilibrium for a ternary system using the GMDH-type neural network and genetic algorithm. Appl. Math. Model., 36, 4096-4105.
[15] Abdolrahimi, S., Nasernejad, B., Pazuki, G. (2014). Prediction of partition coefficients of alkaloids in ionic liquids based aqueous biphasic systems using hybrid group method of data handling (GMDH) neural network. J. Mol. Liq., 191, 79-84.
[16] Atashrouz, S., Pazuki, G., Kakhki, S.S. (2015). A GMDH-type neural network for prediction of water activity in glycol and Poly (ethylene glycol) solutions. J. Mol. Liq., 202, 95-100.
[17] Yousefi, A.R., Ghasemian, N. (2016). Prediction of papaya fruit moisture content using hybrid GMDH - neural network modeling during thin layer drying process. Iranian Food Sci. Technol. Res. J., 11, 747-757.
[18] Darvishi, H., Khoshtaghaza, M.H., Minaei, S. (2014). Drying kinetics and colour change of lemon slices. Int. Agrophys., 28, 1-6.
[19] Torki-Harchegani, M., Ghasemi-Varnamkhasti, M., Ghanbarian, D., Sadeghi, M., Tohidi, M. (2016). Dehydration characteristics and mathematical modelling of lemon slices drying undergoing oven treatment. Heat Mass Transfer, DOI 10.1007/s00231-015-1546-y.
[20] Ghasemian, N., Nourmoradi, H. (2016). Experimental Study and Mathematical Modeling of Propane-SCR-NOx Using Group Method of Data Handling and Artificial Neural Network. Int. J. Chem. React. Eng.,14, 559-569.
[21] Crank, J., 1975, The mathematics of diffusion (2nd ed.). Oxford, UK: Clarendon Press.
[22] Simal, S., Mulet, A., Tarrazo, J., Rosello, C. (1996). Drying models for green peas. Food Chem., 55, 121–128.
[23] Abe, T., Afzal, T.M. (1997). Thin-layer infrared radiation drying of rough rice. J. Agric. Eng. Res., 67, 289-297.
[24] Hebbar, H.U., Rastogi, N.K. (2001). Mass transfer during infrared drying of cashew kernel. Food Eng., 47, 1-5.
[25] Thorat, I.D., Mohapatra, D., Sutar, R., Kapdi, S., Jagtap, D.D. (2012). Mathematical modeling and experimental study on thin-layer vacuum drying of ginger (Zingiber Officinale R.) slices. Food Bioprocess Technol., 5, 1379-1383.
[26] Kingsly, A., Singh, D. (2007). Drying kinetics of pomegranate arils. Food Eng., 79, 741-744.
[27] Sharma, G., Verma, R., Pathare, P. (2005). Mathematical modeling of infrared radiation thin layer drying of onion slices. Food Eng., 71, 282-286.
[28] Yousefi, A.R., Asadi, V., Nassiri, S.M., Niakousari, M., Khodabakhsh Aghdam, S. (2012). Comparison of mathematical and neural network models in the estimation of papaya fruit moisture content. Philippine J. Agric. Sci., 95, 192-198. 
[29] Madamba, P.S., Driscoll, R.H., Buckle, K.A. (1996). The thin-layer drying characteristics of garlic slices. Food Eng., 29, 75-97.
[30] Kaleemullah, S., Kailappanm, R. (2005). Drying kinetics of red chillies in a rotary dryer. Biosyst. Eng., 92, 15-23.
[31] Doymaz, I. (2007). The kinetics of forced convective air-drying of pumpkin slices. Food Eng., 79, 243-248.
[32] Kaymak-Ertekin, F. (2002). Drying and rehydrating kinetics of green and red peppers. J. Food Sci., 67, 168-175.
[33] Park, K.J., Vohnikova, Z., Brod, F.P.R. (2002). Evaluation of drying parameters and desorption isotherms of garden mint leaves (Mentha crispa L.). Food Eng., 51, 193-199.