[1]. Tharanathan, R. N. (2003). Biodegradable films and composite coatings: past, present and future. Trends Food Sci. Technol., 14(3), 71-78.
[2]. Janjarasskul, T., Krochta, J. M. (2010). Edible Packaging Materials. Annu. Rev. Food Sci. Technol., 1, 415- 448.
[3]. Falguera, V., Quintero, J. P., Jimenez, A., Munoz, J. A., Ibarz, A. (2011). Edible films and coatings: Structures, active functions and trends in their use. Trends Food Sci. Technol., 22, 292-303.
[4]. Jiménez, A., Fabra, M. J., Talens, P., Chiralt, A. (2012). Edible and biodegradable starch films: a review. Food Bioproc. Technol., 5(6), 2058-2076.
[5]. Singh, G., Kapoor, I.P.S., Singh, P., Heluani, C.S. Lampasona, M.P., Catalan, C.A.N. (2008). Chemistry, antioxidant and antimicrobial investigations on essential oil and oleoresins of Zingiber officinale. Food Chem. Toxicol., 46, 3295–3302.
[6]. De Moura, M. R., Mattoso, L. H., Zucolotto, V. (2012). Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. J. Food Eng., 109(3), 520-524.
[7]. Muñoz-Bonilla, A., Fernández-García, M. 2012. Polymeric materials with antimicrobial activity. Prog. Polym. Sci., 37(2), 281-339.
[8]. Coma, V. (2008). Bioactive packaging technologies for extended shelf life of meat-based products. Meat Sci., 78, 90−103.
[9]. Manso, S., Pezo, D., Gómez-Lus, R., Nerín, C. (2014). Diminution of aflatoxin B1 production caused by an active packaging containing cinnamon essential oil. Food Control, 45, 101-108
[10]. Sánchez-González, L., Quintero Saavedra, J.I. Chiralt, A. (2013). Physical properties and antilisterial activity of bioactive edible films containing Lactobacillus plantarum. Food Hydroc., 33, 92-98.
[11]. Mehdizadeh, T., Tajik, H., Rohani, S. M. R., Oromiehie, A. R. (2012). Antibacterial, antioxidant and optical properties of edible starch-chitosan composite film containing Thymus kotschyanus essential oil. In: Veterinary Research Forum p, 167. Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
[12]. Avila-Sosa, R., Palou, E., Mungua, M. T. M., Nevarez-Moorillon, G. V., Cruz, A. R. N., Lopez-Malo, A. (2012). Antifungal activity by vapor contact of essential oils added to amaranth, chitosan, or starch edible films. Int. J. Food Mic., 153, 66-72.
[13]. Bonilla, J., Talón, E., Atarés, L., Vargas, M., Chiralt, A. (2013). Effect of the incorporation of antioxidants on physicochemical and antioxidant properties of wheat starch–chitosan films. J. Food Eng., 118(3), 271-278.
[14]. Ghasemlou, M., Aliheidari, N., Fahmi, R., Shojaee-Aliabadi, S., Keshavarz, B., Cran, M.J., Khaksar, R. (2013).
Physical, mechanical and barrier properties of corn starch films incorporated with plant essential oils.
Carb. Pol., 98, 1117-1126.
[15]. Salarbashi, D., Tajik, S., Ghasemlou, M., Shojaee-Aliabadi, S., Noghabi, M. S., Khaksar, R. (2013). Characterization of soluble soybean polysaccharide film incorporated essential oil intended for food packaging. Carb. Pol., 98(1), 1127-1136.
[16]. Hosseini, S. F., Rezaei, M., Zandi, M., Farahmandghavi, F. (2015). Bio-based composite edible films containing Origanum vulgare L. essential oil. Ind. Crops Prod., 67,403-413.
[17]. Padulosi, S., Hadj-Hassan, A. (1998). Towards a comprehensive documentation of distribution and use of Pistacia: genetic diversity in central and West Asia, North Africa and Mediterranean Europe. Report of the IPGRI Workshop. 16-26.
[18]. Farhoosh, R., Tavassoli-Kafrani, M.H., Sharif, A. (2013). Assaying Antioxidant Characteristics of Sesame Seed, Rice Bran, and Bene Hull Oils and their Unsaponifiable Matters by Using DPPH Radical-Scavenging Model System. J. Agri. Sci. Technol.. 15, 241-253.
[19]. Tohidi, M., Khayami, M., Nejati, V., Meftahizade, H. (2011). Evaluation of antibacterial activity and wound healing of Pistacia atlantica and Pistacia khinjuk. J. Med. Plant Res., 5, 4310-4314.
[20]. Mohagheghzadeh, A., Faridi, P., Ghasemi, Y. (2010). Analysis of mount Atlas mastic smoke: A potential fod preservative. Fitoterapia. 81,57-580.
[21]. Hatamnia, A. A., Abbaspour, N., Darvishzadeh, R. (2014). Antioxidant activity and phenolic profile of different parts of Bene (Pistacia atlantica subsp. kurdica) fruits. Food chem., 145, 306-311.
[22]. Gourine, N., Yousfi, M., Bombarda, I., Nadjemi, B., Stocker, P., Gaydon, E.M. (2010). Antioxidant activities and chemical composition of essential oil of Pistacia atlantica from Algeria. Ind. Crops Prod., 31, 203–208.
[23]. Hosseini, F., Adlgostar, A., Sharifnia, F. (2013). Antibacterial activity of Pistacia extracts on Streptococcus mutans biofilm. Int. Res. J. Biol. Sci., 2(2),1-7.
[24]. British Pharmacopoeia. (1988), London, HMSO, (2), pp, 137–8.
[25]. Barzegar, H., Azizi, M. H., Barzegar, M., Hamidi-Esfahani, Z. (2014). Effect of potassium sorbate on antimicrobial and physical properties of starch–clay nanocomposite films. Carb. Pol., 110, 26-31.
[26]. Siripatrawan, U., Harte, B. R. (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids, 24(8), 770-775.
[27]. Brand-Williams, W., Cuvelier, M. E., Berset, C. (1995).Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol., 28(1): 25-30.
[28]. Bellik, Y. (2014). Total antioxidant activity and antimicrobial potency of the essential oil and oleoresin of Zingiber officinale Roscoe. Asian Pac. J. Trop. Dis., 1,40-44.
[29]. Shen, X. L., Wu, J. M., Chen, Y., Zhao, G. (2010). Antimicrobial and physical properties of sweet potato starch films incorporated with potassium sorbate or chitosan. Food Hydrocolloids, 24(4), 285-290.
[30]. Souza, A. C., Dias, A. M., Sousa, H. C., Tadini, C. C. (2014). Impregnation of cinnamaldehyde into cassava starch biocomposite films using supercritical fluid technology for the development of food active packaging. Carb, Pol., 102, 830-837.
[31]. Papageorgiou, V. P., Assimopoulou, A. N., Yannovits-Argiriadis, N. (1999). Chemical composition of the essential oil of Chios turpentine. J. Essen. Oil Res., 11(3), 367-368.
[32]. Koutsoudaki, C., Krsek, M., Rodger, A. (2005). Chemical composition and antibacterial activity of the essential oil and the gum of Pistacia lentiscus Var. chia. J. Agric. Food Chem., 53(20), 7681-7685.
[33]. Hussain, A.I., Anwar, F., Hussain Sherazi, S.T., Przybylski, R., (2008). Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem., 108, 986–995.
[34]. Alma, M. H., Nitz, S., Kollmannsberger, H., Digrak, M., Efe, F. T., Yilmaz, N. (2004). Chemical composition and antimicrobial activity of the essential oils from the gum of Turkish pistachio (Pistacia vera L.). J. Agric. Food Chem., 52(12), 3911-3914.
[35]. Delazar, A., Reid, R. G., Sarker, S. D. (2004). GC–MS analysis of the essential oil from, the oleoresin of Pistacia atlantica var. mutica. Chem. Natural Comp., 40, 24–27.
[37]. Shaaban, H. A., Mahmoud, K. F. (2014). In-vitro antibacterial and antioxidant properties of starch/chitosan edible composite film incorporated with thyme essential oil. J. Arab Soci. Med. Res., 9(2), 54.
[38]. Martucci, J.F. Gende, L.B. Neira, L.M., Ruseckaite, R.A. (2015). Oregano and lavender essential oils as antioxidant and antimicrobial additives of biogenic gelatin films. Ind. Crops Prod., 71,205–213.
[39]. Teixeira, B., Marques, A., Ramos, C., Batista, I., Serrano, C., Matos, O., Neng, N.R., Nogueira, J.M.F., Saraiva, J.A., Nunes, M.L. (2012). European pennyroyal (Mentha pulegium) from Portugal: Chemical composition of essential oil and antioxidant and antimicrobial properties of extracts and essential oil. Ind. Crops Prod., 36, 81-87.
[40]. Gomez-Estaca, J., Gimnez, B., Montero, P., Gomez-Guillén, M. C. (2009). Incorporation of antioxidant borage extract into edible films based on sole skin gelatin or a commercial fish gelatin. J. Food Eng., 92, 78-85.
[41]. Molyneux, P. (2004). The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Food Sci. Technol., 26(2), 211-219.
[42]. Weerakkody, N. S., Caffin, N., Turner, M. S. Dykes, G. A. (2010). In vitro antimicrobial activity of less-utilized spice and herb extracts against selected food-borne bacteria. Food Control, 21, 1408-1414.
[43]. Shojaee-Aliabadi, S., Mohammadifar, M. A., Hosseini, H., Mohammadi, A., Ghasemlou, M., Hosseini, S., M. andKhaksar, R. (2014). Characterization of nanobiocomposite kappa-carrageenan film with Zataria multiflora essential oil and nanoclay. Int. J. Biol. Macro., 69, 282-289.
[44]. Chaibi, A., Ababouch, L. H., Belasri, K., Boucetta, S., Busta, F. F. (1997). Inhibition of germination and vegetative growth of Bacillus cereus and Clostridium botulinum 62A spores by essential oils. Food Microbiology, 14(2), 161-174.
[45]. Chi, P.T.L. (2013). Chemical composition, antioxidant and antimicrobial activities of essential oils extracted from citrus varieties in Vietnam. Thesis of master degree. Hochiminh city international university. Vietnam, 1-75.
[46]. Benhammou N., Bekkara F.A., Panovska T.K. (2008). Antioxidant and antimicrobial activities of the Pistacia lentiscus and Pistacia atlantica extracts. Afr. J. Pharm. Pharmacol., 2(2), 022-028.
[47]. Paraschos, S., Magiatis, P., Gousia, P., Economou, V., Sakkas, H., Papadopoulou, C., Skaltsounis, A. L. (2011). Chemical investigation and antimicrobial properties of mastic water and its major constituents. Food Chem., 129(3), 907-911.
[48]. Djenane, D., Yangüela, J., Yangüela, L., Djerbal, M., Roncalés, P. (2011). Antimicrobial activity of Pistacia lentiscus and Satureja montana essential oils against Listeria monocytogenes CECT 935 using laboratory media: Efficacy and synergistic potential in minced beef. Food Control. 22, 10 46-1053.
[49]. Raman, A., Weir, U., Bloomfield, S. F. (1995). Antimicrobial effects of teatree oil and its major components on Staphylococcus aureus, Staphylococcus epidermidis and Propionibacterium acnes. J. Appl. Microbiol., 21, 242-245.
[50]. Barra, A., Coroneo, V., Dessi, S., Cabras, P., Angioni, A. (2007). Characterization of the volatile constituents in the essential oil of Pistacia lentiscus L. from different origins and its antifungal and antioxidant activity. J. Agric. Food Chem., 55(17), 7093-7098.
[51]. Hyldgaard, M., Mygind, T., Meyer, R.L. (2012). Essential oils in food preservation: mode of action, synergies and interaction with food matrix components. 3(12), 1-24.
[52]. Thormar, H. (2011). Lipids and Essential Oils as Antimicrobial Agents. John Wiley & Sons. P, 220.
[53]. Zhang, L., Li, R., Dong, F., Tian, A., Li, Z., Dai, Y.( 2015). Physical, mechanical and antimicrobial properties of starch films incorporated with ε-poly-l-lysine. Food Chem, 166, 107-114.
[54]. Jiménez, A., Sánchez-González, L., Desobry, S., Chiralt, A., Tehrany, E. A. (2014). Influence of nanoliposomes incorporation on properties of film forming dispersions and films based on corn starch and sodium caseinate. Food Hydrocolloids, 35, 159-169.
[55]. Zhang, Y., Han, J. H. (2006). Plasticization of pea starch films with monosaccharides and polyols. J. Food Sci., 71(6,:E253-E261.
[56]. Mano, J. F., Koniarova, D., Reis, R. L.(2003).Thermal properties of thermoplastic of Materials. Sci. Mater. Med., 14, 127–135.