[1] اولیایی، س. ا، قنبرزاده، ب، مؤیدی، ع. ا، پورثانی، پ. خاتمیان، م. (1394). تولید و بررسی نانوساختار و خواص فیزیکوشیمیایی فیلم زیست کامپوزیت نشاسته حاوی نانوذرات TiO2. فصلنامه فناوریهای نوین غذایی، سال دوم، شماره 8، 101-87.
[2] عربستانی، ا. کدیور، م. شاهدی، م. گلی، س. ا. ح. (1392). بررسی برخی خصوصیات ساختاری و فعالیت آنتیاکسیدانی فیلم پروتئینی دانه گاودانه و تأثیر آن بر شاخصهای اکسیداسیون روغن آفتابگردان. فصلنامه فناوریهای نوین غذایی، سال اول، شماره 2، 14-3.
[3] Vergnaud, J. M. (1998). Problems encountered for food safety with polymer packages: chemical exchange, recycling. Adv. Colloid Interface Sci., 78, 267-297.
[4] Zolfi, M., Khodaiyan, F., Mousavi, M. Hashemi, M. (2014). Development and characterization of the kefiran-whey proteinisolate-TiO2 nanocomposite films. Int. J. Biol. Macromol, 65, 340–345.
[5] Oleyaei, S. A., Zahedi, Y., Ghanbarzadeh, B., & Moayedi, A. A. (2016). Modification ofphysicochemical and thermal properties of starch films by incorporation ofTiO2nanoparticles. Int. J. Biol. Macromol, 89,256–264.
[6] Ghanbarzadeh, B., Almasi H., Oleyaei, S. A. (2014). A Novel Modified Starch/Carboxy Methyl Cellulose/Montmorillonite Bionanocomposite Film: Structural and Physical Properties, Int. J. Food Eng., 10 (1): 121–130.
[7] Haugaard, V.K. & Mortensen, G. (2003). Biobased food packaging. J. Food Sci., 68, 824-835.
[8] Waterschoot, J., Gomand, S. V., Fierens E., Delcour, J. A. (2014). Production, structure, physicochemical and functional properties of maize, cassava, wheat, potato and rice starches. Starch/Stärke, 66, 1–16.
[9] Ghanbarzadeh, B., Oleyaei, S. A., Almasi H. (2015). Nano-Structured Materials Utilized in Biopolymer based Plastics for Food Packaging Applications. Crit. Rev. Food Sci. Nutr., 55:1699–1723.
[10] Almasi, H., Ghanbarzadeh, B., Entezami, A.A. (2010). Physicochemical properties of starch–CMC–nanoclay biodegradable films. Int. J. Biol. Macromol. 46, 1, 1-5.
[11] Kreyling, W.G., Semmler-Behnke, M., & Chaudhry, Q. (2010). A complementary definition of nanomaterial. Nano Today, 5, 165-168.
[12] Silvestre, C., Duraccio, D. & Cimmino, S., (2011). Food packaging based on polymer nanomaterials. Prog. Polym. Sci., 36, 12, 1766-1782.
[13] Majdzadeh-Ardakani, K., Navarchian, A. H. & Sadeghi, F. (2010). Optimization of mechanical properties of thermoplastic starch/clay nanocomposites, Carbohyd. Polym., 79, 547–554.
[14] Sadegh-Hassani, F., & Mohammadi Nafchi, A. (2014). Preparation and characterization of Bionanocomposite films based on potato starch/halloysitenanoclay. Int. J. Biol. Macromol., 67, 458–462.
[15] Perez-Mateos, M., Montero, P., Gomez-Guillen, M.C. (2009). Formulation and stability of biodegradable films made from cod gelatinand sunflower oil blends. Food Hydrocoll., 23, 53–61.
[16] Sothornvit, R., Rhim, J. W., Hong, S.I. (2009). Effect of nano-clay type on the physical and antimicrobial properties of whey protein isolate/clay composite films. J. Food Eng., 91, 468–473.
[17] Tunç, S., Duman, O. (2011). Preparation of active antimicrobial methyl cellulose/carvacrol/ montmorillonitenanocomposite films and investigation of carvacrol release. LWT-Food Sci. Technol.,44, 465-472.
[18] Ibrahim, S.M., (2010). Characterization, Mechanical, and Thermal Properties of Gamma Irradiated Starch Films Reinforced with Mineral Clay. J. Appl. Polym. Sci., 119, 685–692.
[19] Bozanic, D. K., Djokovic V., Bibic, N., Sreekumari Nair, P., Georges, M. K., & Radhakrishnan, T., (2009). Biopolymer-protected CdSe nanoparticles. Carbohydr. Res., 344, 2383–2387.
[20] Ning, W., Xingxiang, Z., Na, H & Shihe. B., (2009). Effect of citric acid and processing on the performance of thermoplastic starch/montmorillonite nanocomposites. Carbohyd. Polym., 76, 68–73.
[21] Cyras, V. P., Manfredi, L. B., Ton-That, M. & Vazquez, A., (2008). Physiacal and mechanical properties of thermoplastic starch/ montmorillonite nanocomposite films. Carbohyd. Polym., 73, 55-63.
[22] Liu, H., Chaudhary, D., Yusa, S. & Tadé, M.O. (2010). Glycerol/starch/Na+-montmorillonite nanocomposites: A XRD, FTIR, DSC and 1H NMR study. Carbohyd. Polym., 83, 4, 1591-1597.
[23] Kumar, P., Sandeep, K.P., Alavi, S. & Truong, V.D., (2011). A Review of Experimental and Modeling Techniques to Determine Properties of Biopolymer-Based Nanocomposites. J. Food Sci., 76, 1, 1-13.
[24] Aouada, F.A., Mattoso, L.H.C. & Elson, L., (2011). New strategies in the preparation of exfoliated thermoplastic starch–montmorillonite nanocomposites. Ind. Crops. Prod., 34, 1502–1508.
[25] Wilhelm, H. M., Sierakowski, M. R., Souza, G. P., Wypych, F., 2003. Starch fims reinforced with mineral clay. Carbohyd. Polym., 52, 101-110.
[26] Almasi, H., Ghanbarzadeh, B., & Entezami, A.A. (2010). Physicochemical properties of starch–CMC–nanoclay biodegradable films. Int. J. Biol. Macromol., 46, 1, 1-5.
[27] Kumar, P., Sandeep, K.P., Alavi, S., Truong, V.D., & Gorga, R.E. (2010). Preparation and characterization of bio-nanocomposite films based on soy protein isolate and montmorillonite using melt extrusion, J. Food Eng., 100, 480–489.
[28] اولیایی، س. ا. (1391). تولید و مقایسه ویژگیهای فیزیکی نانوبیوکامپوزیتهای نشاسته حاوی نانورس و نانوذرات تیتانیمدی اکسید، پایاننامه کارشناسی ارشد صنایع غذایی، دانشگاه تبریز، دانشکده کشاورزی.
[29] Rhim, J.W., (2011). Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films. Carbohyd. Polym., 86, 691– 699.
[30] Hoang-Minh, T., Le, T.H., Kasbohm, J. & Gieré, R., (2010). UV-protection characteristics of some clays. Appl. Clay. Sci., 48, 349–357.
[31] Hoang-Minh, T., Le, T.H., Kasbohm, J. & Gieré, R., (2011). Substituting non-natural agents in UV-protection cream by a mixture of clay with Ganoderma pfeifferi extract. Appl. Clay. Sci., 53, 66–72.
[32] Bruna, J.E., Penaloza, A., Guarda, A., Rodriguez, F., & Galotto, M.J., (2012). Development of Mt Cu2+/LDPE nanocomposites with antimicrobial activity for potential use in food packaging. Appl. Clay. Sci., 58, 79-87.