تعیین زمان بهینه پخت سبزیجات با کمک پردازش تصاویر دیجیتالی و اندازه گیری مختصات رنگی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشگاه رامین خوزستان

2 استادیار دانشگاه کشاورزی و منایع طبیعی رامین

چکیده

رنگ اولین ویژگی کیفیت مواد غذایی است که توسط مصرف‌کنندگان موردبررسی قرار می‌گیرد. برای اندازه‌گیری رنگ مواد غذایی به ‌طور معمول از دستگاه‌های متداولی مانند رنگ‌سنج‌ها، طیف‌سنج‌ها و سنجشگرهای حسی استفاده می‌شود. حال‌آنکه دستگاه اندازه‌گیری که متشکل از یک دوربین دیجیتال و نرم‌افزار تجزیه ‌و تحلیل تصویر ‌باشد به ‌عنوان جایگزینی مناسب برای دستگاه‌های متداول اندازه‌گیری رنگ، موردتوجه قرارگرفته‌اند. هدف از این پژوهش، توسعه سامانه‌ای جهت تعیین زمان بهینه پخت سبزیجات (مطالعه موردی: لوبیا، کدو و بروکلی) با کمک پردازش تصاویر دیجیتالی و اندازه‌گیری مختصات رنگی می‌باشد. در این مطالعه نشان داده شد که سامانه عکس‌برداری دیجیتال توسعه یافته قادر است، تغییرات اندک رنگ سبز سبزیجات را در طی فرآیند حرارتی اندازه‌گیری کند و بر اساس آن حالت بهینه پخت محصولات را به‌گونه‌ای که کیفیت آن‌ها از نظر مصرف‌کننده خوشایند باشد، تعیین نماید. مطابق آنالیز آماری صورت گرفته مشخص گردید که میان پارامترهای رنگی سه نوع سبزی انتخاب شده در این پژوهش در فضای Lab در سطح احتمال 5% تفاوت معنی‌دار وجود دارد که نشان از توانایی سامانه پیشنهاد شده به منظور تشخیص زمان بهینه پخت در سبزیجات مختلف دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Determination of the Optimal Cooking Time of Vegetables using Digital Image Processing and Color Coordinate Measurement

نویسندگان [English]

  • Maryam Nadafzadeh 1
  • Saman Abdanan Mehdizadeh 2
1 MSc student of Mechanics of Biosystems Engineering Department, Faculty of Agricultural Engineering and Rural Development, Ramin University of Agriculture and Natural Resources of Khuzestan
2 Assistant professor of Mechanics of Biosystems Engineering Department, Faculty of Agricultural Engineering and Rural Development, Ramin University of Agriculture and Natural Resources of Khuzestan
چکیده [English]

Color is the first quality attribute of food evaluated by consumers. The color of foods usually be measured using traditional instruments such as spectrophotometers, colorimeters and sensory evaluations. However the measurement device which consists of a digital camera and image analysis software has been considered as an attractive alternative to traditional color measurement devices. The purpose of this study was to develop a system for determination of optimal cooking time of vegetables (Case study: Bean, Zucchini and Broccoli) using digital image processing through color measurement. In this study it was shown that developed digital imaging system could measure the color changes of green vegetables during heat treatments. Furthermore, the optimal cooking time could be determined based on color changes in a way that its quality from a consumer’s point of view was acceptable. Moreover, according to statistical analysis, there were significant differences among Lab color parameters of three types of selected vegetables at their optimal cooking time (p

کلیدواژه‌ها [English]

  • Optimal cooking time
  • Digital images processing
  • Heat treatments
  • Vegetables
[1] Cardello, A. V. (1996). The role of the human senses in food acceptance. In Food choice, acceptance and consumption, (pp. 1-82). Springer US.
 
[2] Clydesdale, F. M. (1993). Color as a factor in food choice. Crit. Rev. Food Sci., 33, 83-101.
 
[3] Canjura, F., Schwartz, S., Nunes, R. (1991). Degradation kinetics of chlorophylls and chlorophyllides. J. Food Sci., 56, 1639-1643.
 
[4] Lee, S. M., Lee, K. T., Lee, S. H., Song, J. K. (2013). Origin of human colour preference for food. J. Food Eng., 119(3), 508-515.
 
[5] Schwartz, S. J., Lorenzo, T. V. (1990). Chlorophylls in foods. Crit. Rev. Food Sci., 29, 1-17.
 
[6] DeMan, J. M. (1999). Principles of Food Chem, 3th ed., Gaithersburg, Maryland: Aspen Publishers, Inc.
 
[7] Schwartz, S. J., von Elbe, J. H. (1983). Kinetics of chlorophyll degradation to pyropheophytin in vegetables. J. Food Sci., 48, 1303-1306.
 
[8] Schwartz, S. J., Woo, S. L., von Elbe, J. H. (1981). High-performance liquid chromatography of chlorophylls and their derivatives in fresh and processed spinach. J. Agr. Food Chem., 29, 533-535.
 
[9] Teng, S. S., Chen, B. H. (1999). Formation of pyrochlorophylls and their derivatives in spinach leaves during heating. Food Chem., 65, 367-373.
 
[10] World Health Organization. (2014). Healthy diet. Fact sheet, pp 394.
 
[11] Clydesdale, F., Francis, F. (1968). Chlorophyll changes in thermally processed spinach as influenced by enzyme conversion and pH adjustment. Food Technol., 22, 793-796.
 
[12] Haisman, D., Clarke, M. (1975). The interfacial factor in the heat-induced conversion of chlorophyll to pheophytin in green leaves. J. Sci. Food. Agr., 26, 1111-1126.
 
[13] Tijskens, L. M. M., Schijvens, E. P. H. M., Biekman, E. S. A. (2001). Modelling the change in colour of broccoli and green beans. Innov. Food Sci. Emerg., 2, 303-313.
 
[14] Hunt, R., Pointer, M. (2011). Measuring colour, 4th ed., NewYork: John Wiley and Sons.
 
[15] CIE. (2004). CIE Technical Report: Colorimetry, 3th ed., Vienna: CIE Central Bureau. Publication CIE no. 15.2.
 
[16] HunterLab. (2001). Application note. Insight on Color, 13, pp 1-4.
 
[17] آبدانان مهدی­زاده، س.؛ امرایی، س. (1395). برآورد محاسباتی واحدهای رنگی L*a*b* از RGB با کمک پردازش تصاویر دیجیتالی. نشریه پژوهش­های علوم صنایع غذایی ایران (پذیرفته شده برای چاپ).
 
[18] Hill, B., Roger, T., Vorhagen, F.W. (1997). Comparative analysis of the quantization of color spaces on the basis of the CIELAB color-difference formula. ACM T. Graphic., 16, 109-154.
 
[19] Mahy, M., Eycken, L., Oosterlinck, A. (1994). Evaluation of uniform color spaces developed after the adoption of CIELAB and CIELUV. Color Res. Appl., 19, 105-121.
 
[20] Balaban, M. O., Odabasi, A. Z. (2006). Measuring color with machine vision. Food Technol., 60, 32-36.
 
[21] Leon, K., Mery, D., Pedreschi, F., Leon, J. (2006). Color measurement in L*a*b* units from RGB digital images. Food Res. Int., 39, 1084-1091.
 
[22] O'Sullivan, M. G., Byrne, D. V., Martens, H., Gidskehaug, L. H., Andersen, H. J., Martens, M. (2003). Evaluation of pork colour: prediction of visual sensory quality of meat from instrumental and computer vision methods of colour analysis. Meat Sci., 65, 909-918.
 
[23] Segnini, S., Dejmek, P., Oste, R. (1999). A low cost video technique for colour measurement of potato chips. Lwt- Food Sci. Technol., 32, 216-222.
 
[24] Yam, K. L., Papadakis, S. E. (2004). A simple digital imaging method for measuring and analyzing color of food surfaces. J. Food Eng., 61, 137-142.
 
[25] Wu, D., Sun, D. W. (2013). Colour measurements by computer vision for food quality control- a review. Trends. Food Sci. Tech., 29, 5-20.
 
[26] Valous, N. A., Mendoza, F., Sun, D. W., Allen, P. (2009). Colour calibration of a laboratory computer vision system for quality evaluation of pre-sliced hams. Meat Sci., 81, 132-141.
 
[27] Heinemann, P. H., Huges, R., Morrow, C. T., Sommer, H. J., Beelman, R. B., Wuest, P. J. (1994). Grading of mushrooms using a machine vision system. T. ASAE., 37, 1671-1677.
 
[28] Liming, X., Yanchao, Z. (2010). Automated strawberry grading system based on image processing. Comput. Electron. Agr., 71, S32-S39.
 
[29] Tao, Y., Heinemann, P. H., Varghese, Z., Morrow, C. T., Sommer, J. H. (1995). Machine vision for colour inspection of potatoes and apples. T. ASAE., 38, 1555-1561.
 
[30] Abdollahi Moghaddam, M. R., Rafe, A., Taghizadeh, M. (2014). Kinetics of color and physical attributes of cookie during deep-fat frying by image processing techniques. J. Food Process. Pres., 39, 91-99.
 
[31] Nadian, M. H., Rafiee, S., Aghbashlo, M., Hosseinpour, S., Mohtasebi, S. S. (2015). Continuous real-time monitoring and neutral network modeling of apple slices color changes during hot air drying. Food. Bioprod. Process., 94, 263-274.
 
[32] Gonzalez, R. C., Woods, R. E. (2009). Digital Image Processing using MATLAB, 3th ed., Pearson Education India, pp. 1-954.
 
[33] Berns, R. S. (2000). Billmeyer and Saltzman's principles of color technology, 3th ed., New York: John Wiley and Sons.
 
[34] Steet, J. A., Tong, C. H. (1996a). Degradation kinetics of green color and chlorophylls in peas by colorimetry and HPLC. J. Food Sci., 61, 924-928.
 
[35] Mackinney, G., Weast, C. A. (1939). Color changes in Green vegetables. Ind. Eng. Chem., 32, 392-395.
 
[36] Gunawan, M. I., Barringer, S. A. (2000). Green color degradation of blanched broccoli (Brassica oleracea) due to acid and microbial growth. J. Food Process. Pres., 24, 253-263.
 
[37] Manninen, H., Paakki, M., Hopia, A., Franzén, R. (2015). Measuring the green color of vegetables from digital images using image analysis. Lwt- Food Sci. Technol., 63(2), 1184-1190.
 
[38] Weemaes, C. A., Ooms, V., Van Loey, A. M., Hendrickx, M. E. (1999). Kinetics of chlorophyll degradation and color loss in heated broccoli juice. J. Agr. Food Chem., 47, 2404-2409.