[1] Ray, S.S., Bousmina, M. (2005). Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Prog. Mater. Sci., 50, 962–1079.
[2] Shan, G., Surampalli, R.Y., Tyagi, R.D., Zhang, T.C. (2009). Nanomaterials for environmental burden reduction, waste treatment, and nonpoint source pollution control. Front. Environ. Sci. Eng. China, 3(3), 249–264.
[3] Davis, G., Song, J. H. (2006). Biodegradable packaging based on raw materials from crops and their impact on waste management. Ind. Crop. Prod., 23, 147-161.
[4] Park, S.K., Hettiarachy, N.S., Were L. (2000). Degradation behavior of soy protein-wheat gluten films in simulated soil conditions. J. Agr. Food Chem., 48, 60-68.
[5] Rhim J.W., NG P.K.W., (2007). Natural Biopolymer-Based Nanocomposite Films for Packaging Applications. Crit. Rev. Food Sci., 47, 411-433.
[6] Almasi, H., Ghanbarzadeh, B., Entezami, A.A. (2010). Physicochemical properties of starch–CMC–nanoclay biodegradable films. Int. J. Biol. Macromol., 46(1), 1-5.
[7] Averous, L., Boquillon, N. (2004). Biocomposites based on plasticized starch: thermal and mechanical behaviours. Carbohydr. Polym., 56, 111–122.
[8] Rhim, J.W. (2007). Potential use of biopolymer-based nanocomposite in food packaging applications. Food Sci. Biotechnol., 16(5), 691-709.
[9] deAzeredo, H.M.C. (2009). Nanocomposites for food packaging applications. Food Res. In., 42, 1240-1253.
[10] Gacitua W.E., Ballerini A.A., Zhang J. (2005). Polymer Nanocomposites: Synthetic and Natural Fillers a Review. Cien. Tech., 7, 59-178.
[11] Dufresne A., Belgacem M.N. (2010). Cellulose Reinforced Composites: from Micro to Nanoscale, Overview, Polimeros. Cien.Tech., 9, 1-10.
[12] Svagan A.J., Hedenqvist M.S., Berglund L. (2009). Reduced water vapour sorption in cellulose nanocomposites with starch matrix. Compos. Sci. Technol., 69, 500-506.
[13] Kreyling, W.G., Semmler-Behnke, M., Chaudhry, Q. (2010). A complementary definition of nanomaterial. Nano Today, 5, 165-168.
[14] Kumar, A.P., Depan, D., Tomer, N.S., Singh, R.P. (2009). Nanoscale particles for polymer degradation and stabilization: Trendsand future perspectives. Prog. Polym. Sci., 34, 479-515.
[15] Zhou, J.J., Wang, S.Y., Gunasekaran, S. (2009). Preparation and characterization of whey protein film incorporated with TiO2 nanoparticles. J. Food Sci., 74(7), 50-56.
[16] Li, Y., Jiang, Y., Liu, F., Ren, F., Zhao, G., Leng, X. (2011). Fabrication and characterization of TiO2/whey protein isolate nanocomposite film. Food Hydrocolloids, 25(6), 1-7.
[17] Cerrada, M.L., Serrano, C., Chaves, M.S., Garcia, M.F., Martin, F.F., Andres, A., Rioboo, R.J.J., Kubacka, A., Ferrer, M., Garcia, M.F. (2008). Self-sterilized EVOH-TiO2 nanocomposites: Interface effectson biocidal properties. Adv. Funct.Mater., 18, 1949–1960.
[18] Polizos, G., Tuncer, E., Sauers, I., More, K.L. (2010). Physical properties of epoxyresin/titanium dioxide nanocomposites. Polym. Eng. Sci., 102, 87-93.
[19] Perez-Mateos, M., Montero, P., Gomez-Guillen, M.C. (2009). Formulation and stability of biodegradable films made from cod gelatinand sunflower oil blends. Food Hydrocolloids, 23, 53–61.
[20] Sothornvit, R., Rhim, J.W., Hong, S.I. (2009). Effect of nano-clay type on the physical and antimicrobial properties of whey protein isolate/clay composite films. J. Food Eng., 91, 468–473.
[21] Tunç, S., Duman, O. (2011). Preparation of active antimicrobial methyl cellulose/carvacrol/ montmorillonite nanocomposite films and investigation of carvacrol release. LWT-Food Sci. Technol., 44, 465-472.
[22] Diaz-Visurraga, J., Mele´ndrez, M.F., Garcia, A., Paulraj, M., Cardenas, G. (2010). Semitransparent chitosan-TiO2 nanotubes composite film for food package applications. J. Appl. Polym. Sci., 116, 3503–3515.
[23] Majdzadeh-Ardakani, K., Navarchian, A.H., Sadeghi, F. (2010). Optimization of mechanical properties of thermoplastic starch/clay nanocomposites. Carbohydr. Polym. 19, 547–554.
[24] Mallakpour, S. Barati, A. (2011). Efficient preparation of hybrid nanocomposite coatings based on poly (vinylalcohol) and silane coupling agent modified TiO2 nanoparticles. Prog. Org. Coat., 71, 391–398.
[25] Liao, H.T., Wu, C.S. (2007). New biodegradable blends prepared from polylactide, titanium tetraisopropylate, and starch. J. Appl. Polym. Sci., 108, 2280–2289.
[26] Zhuang, W., Liu, J., Zhang, J.H., Hu, B.X., Shen, J. (2009). Preparation, characterization, and properties of TiO2/PLA nanocomposites by in situ polymerization. Polym. Composite., 1074-1080.
[27] Li, Y., Chen, C., Li, J., Sun, X.S. (2011). Synthesis and characterization of bionanocomposites of poly (lactic acid) and TiO2 nanowires by in situ polymerization. Polymer, 52, 2367-2375.
[28] Zolfi, M., Khodaiyan, F., Mousavi, M. Hashemi, M. (2014). Development and characterization of the kefiran-whey proteinisolate-TiO2 nanocomposite films. Int. J. Biol. Macromol, 65, 340–345.
[29] Zolfi, M., Khodaiyan, F., Mousavi, M., Hashemi, M. (2014). The characteristics improvement of biodegradable films made from kefiran-whey protein by nanoparticles incorporation, Carbohydr. Polym., 109, 118-125.
[30] Taskaya, L., Chen, Y.C., Jaczynski, J., (2010). Color improvement by titanium dioxide and its effect on gelation and texture of proteins recovered from whole fish using isoelectric solubilization/precipitation. LWT-Food Sci. Technol., 43, 401–408.