[2] Alkanan, Z.T., Altemimi, A.B., Al-Hilphy, A.R., Watson, D.G., & Pratap-Singh, A. (2021). Ohmic heating in the food industry: Developments in concepts and applications during 2013–2020.
Appl. Sci., 11(6), p.2507.
https://doi.org/10.3390/app11062507
[3] Aydin, C., Kurt, Ü., & Kaya, Y. (2020). Comparison of the effects of ohmic and conventional heating methods on some quality parameters of the hot-smoked fish Pâté.
J. Aquat. Food Prod. Technol., 29(4), 407-416.
https://doi.org/10.1080/10498850.2020.1741752
[5] Balthazar, C.F., Cabral, L., Guimarães, J.T., Noronha, M.F., Cappato, L.P., Cruz, A.G., & Sant'Ana, A.S. (2022). Conventional and ohmic heating pasteurization of fresh and thawed sheep milk: Energy consumption and assessment of bacterial microbiota during refrigerated storage.
Innov. Food Sci. Emerg. Technol., 76, p.102947.
https://doi.org/10.1016/j.ifset.2022.102947
[7] Calvo, L. M., & Domingo, R. (2017). CO2 emissions reduction and energy efficiency improvements in paper making drying process control by sensors.
Sustainability, 9(4), 514.
https://doi.org/10.3390/su9040514
[8] Cappato, L.P., Ferreira, M.V., Guimaraes, J.T., Portela, J.B., Costa, A.L., Freitas, M.Q., Cunha, R.L., Oliveira, C.A., Mercali, G.D., Marzack, L.D.F., & Cruz, A.G. (2017). Ohmic heating in dairy processing: Relevant aspects for safety and quality.
Trends Food Sci. Technol., 62, 104-112.
https://doi.org/10.1016/j.tifs.2017.01.010
[9] Cevik, M. (2021). Electrical conductivity and performance evaluation of verjuice concentration process using ohmic heating method.
J. Food Process Eng., 44(5), p.e13672.
https://doi.org/10.1111/jfpe.13672
[10] Cokgezme, O.F., Sabanci, S., Cevik, M., Yildiz, H., & Icier, F. (2017). Performance analyses for evaporation of pomegranate juice in ohmic heating assisted vacuum system.
J. Food Eng., 207, 1-9.
https://doi.org/10.1016/j.jfoodeng.2017.03.015
[12] Coutinho, N.M., Silveira, M.R., Rocha, R.S., Moraes, J., Ferreira, M.V.S., Pimentel, T.C., Freitas, M.Q., Silva, M.C., Raices, R.S., Ranadheera, C.S., & Borges, F.O. (2018). Cold plasma processing of milk and dairy products.
Trends Food Sci. Technol., 74, 56-68.
https://doi.org/10.1016/j.tifs.2018.02.008
[13] Darvishi, H., Koushesh Saba, M., Behroozi-Khazaei, N., & Nourbakhsh, H. (2020a). Improving quality and quantity attributes of grape juice concentrate (molasses) using ohmic heating. J. Food Sci. Technol., 57, 1362-1370. https://doi.org/10.1007/s13197-019-04170-1
[14] Darvishi, H., Salami, P., Fadavi, A., & Saba, M.K. (2020b). Processing kinetics, quality and thermodynamic evaluation of mulberry juice concentration process using Ohmic heating.
Food Bioprod. Process., 123, 102-110.
https://doi.org/10.1016/j.fbp.2020.06.003
[15] Darvishi, H., Hosainpour, A., Nargesi, F., & Fadavi, A. (2015). Exergy and energy analyses of liquid food in an ohmic heating process: a case study of tomato production.
Innov. Food Sci. Emerg. Technol., 31, 73-82.
https://doi.org/10.1016/j.ifset.2015.06.012
[16] Darvishi, H., Khodaei, J., Behroozi-Khazaei, N., Salami, P., & Akhijahani, H. S. (2023). Greenhouse gas emission reduction potential, energy and exergy analysis of combined microwave-convective dryer.
Energy, 285, 128772.
https://doi.org/10.1016/j.energy.2023.128772
[17] De Marco, I., Miranda, S., Riemma, S., & Iannone, R. (2016). The impact of alternative apricot conservation techniques on global warming potential.
Chem. Eng. Trans., 49, 325-330.
https://doi.org/10.3303/CET1649055
[18] Duguay, A.J., Ramaswamy, H.S., Zareifard, R., Zhu, S., Grabowski, S., & Marcotte, M. (2016). Ohmic heating behaviour of cabbage and daikon radish. Food Bioprocess Technol., 9, 430-440. https://doi.org/10.1007/s11947-015-1622-9
[19] Fadavi, A., Yousefi, S., Darvishi, H., & Mirsaeedghazi, H. (2018). Comparative study of ohmic vacuum, ohmic, and conventional-vacuum heating methods on the quality of tomato concentrate.
Innov. Food Sci. Emerg. Technol., 47, 225-230.
https://doi.org/10.1016/j.ifset.2018.03.004
[20] Ghnimi, S., Nikkhah, A., Dewulf, J., & Van Haute, S. (2021). Life cycle assessment and energy comparison of aseptic ohmic heating and appertization of chopped tomatoes with juice.
Sci Rep., 11(1), p.13041.
https://doi.org/10.1038/s41598-021-92211-1
[23] Ito, R., Yamanaka-Zamoto, N., Watanabe, M., & Hamada-Sato, N. (2023). Environmental impact assessment of aseptically packaged chicken using ohmic heating.
Food Sci. Technol Res., 29(6), 441-452.
https://doi.org/10.3136/fstr.FSTR-D-22-00220
[24] Lim, S.H., Chin, N.L., Sulaiman, A., Tay, C.H., & Wong, T.H. (2022). Sensory analysis for cow milk product development using high pressure processing (HPP) in the dairy industry.
Foods, 11(9), p.1233.
https://doi.org/10.3390/foods11091233
[25] Nazari, S., Shahhoseini, O., Sohrabi-Kashani, A., Davari, S., Paydar, R., & Delavar-Moghadam, Z. (2010). Experimental determination and analysis of CO2, SO2 and NOx emission factors in Iran’s thermal power plants.
Energy, 35(7), 2992-2998.
https://doi.org/10.1016/j.energy.2010.03.035
[26] Norouzi, S., Fadavi, A., & Darvishi, H. (2021). The ohmic and conventional heating methods in concentration of sour cherry juice: Quality and engineering factors.
J. Food Eng., 291, p.110242.
https://doi.org/10.1016/j.jfoodeng.2020.110242
[27] Paini, A., Romei, S., Stefanini, R., & Vignali, G. (2023). Comparative life cycle assessment of ohmic and conventional heating for fruit and vegetable products: The role of the mix of energy sources.
J. Food Eng., 350, p.111489.
https://doi.org/10.1016/j.jfoodeng.2023.111489
[28] Panirani, P.N., Darvishi, H., Hosainpour, A., & Behroozi-Khazaei, N. (2023). Comparative study of different bread baking methods: Combined ohmic–infrared, ohmic–conventional, infrared–conventional, infrared, and conventional heating.
Innov. Food Sci. Emerg. Technol., 86, p.103349.
https://doi.org/10.1016/j.ifset.2023.103349
[29] Parmar, P., Singh, A. K., Meena, G. S., Borad, S., & Raju, P. N. (2018). Application of ohmic heating for concentration of milk. J. Food Sci. Technol., 55(12), 4956-4963. https://doi.org/10.1007/s13197-018-3431-4
[30] Rocha, R.S., Silva, R., Guimarães, J.T., Balthazar, C.F., Pimentel, T.C., Neto, R.P., Tavares, M.I.B., Esmerino, E.A., Freitas, M.Q., Cappato, L.P., & Calvacanti, R.N. (2020). Possibilities for using ohmic heating in Minas Frescal cheese production.
Food Res. Int., 131, p.109027.
https://doi.org/10.1016/j.foodres.2020.109027
[31] Sun, Y., Liu, Y., Zhou, W., Shao, L., Wang, H., Zhao, Y., Zou, B., Li, X., & Dai, R. 2024. Effects of ohmic heating with different voltages on the quality and microbial diversity of cow milk during thermal treatment and subsequent cold storage.
Int. J. Food Microbiol., 410, p.110483.
https://doi.org/10.1016/j.ijfoodmicro.2023.110483
[32] Sürme, S, A., & Sabancı, S. (2021). The usage of Ohmic heating in milk evaporation and evaluation of electrical conductivity and performance analysis.
J. Food Process. Preserv., 45(9), p.e15522.
https://doi.org/10.1111/jfpp.15522
[33] Torshizi, M.V., Azadbakht, M., & Kashaninejad, M. (2020). Application of response surface method to energy and exergy analyses of the ohmic heating dryer for sour orange juice.
Fuel, 278, p.118261.
https://doi.org/10.1016/j.fuel.2020.118261
[34] Varghese, K.S., Pandey, M.C., Radhakrishna, K., & Bawa, A.S. (2014). Technology, applications and modelling of ohmic heating: a review. J. Food Sci. Technol., 51, 2304-2317. https://doi.org/10.1007/s13197-012-0710-3