امکان‌سنجی به‌کار‌گیری طیف‌سنجی مرئی/فروسرخ نزدیک برای تشخیص تقلب روغن تفاله زیتون با روش‌های شناسایی LDA و SVM

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی بیوسیستم دانشگاه تربیت مدرس، تهران، ایران

2 دانشگاه تربیت مدرس

3 دانشیار، موسسه تحقیقات فنی و مهندسی کشاورزی، سازمان تحقیقات، آموزش و ترویج کشاورزی

چکیده

زیتون یک میوه‌ مدیترانه‏ای است که عمدتاً به دلیل روغن آن کشت می‏شود. روغن‌زیتون فرابکر همیشه مورد توجه و خواست استفاده‌کنندگان بوده است. ازاین‌رو، تقلب در روغن‌های زیتونِ بکر و فرابکر، با افزودن روغن‌هایی مثل کانولا، آفتابگردان، تفاله زیتون و غیره مشاهده می‌شود. تشخیص تقلب در روغن‌های گیاهی با ترکیبات مشابه و گونه‌های متفاوت با روش‌های مرسوم از جمله کروماتوگرافی گازی مشکل و زمان‌بر است و نیاز به آماده‌سازی نمونه و اپراتور دارد. به همین دلیل کاربرد فناوری‌های غیر‌مخرب برای تشخیص تقلب اهمیت دارد. در این پژوهش، با استفاده از فناوری طیف‌سنجی مرئی/فروسرخ نزدیک (Vis/NIR )، تشخیص تقلب روغن پومیس (روغن تفاله زیتون) بررسی شد. از سه نوع روغن‌زیتون فرابکر، بکر و روغن‌زیتون تصفیه شده برای نمونه‌گیری استفاده شد و برای اطمینان از اصالت آن‌ها، مشخصات و درصد ترکیبات سازنده آن با سامانه کروماتوگرافی گازی اندازه‌گیری شد. سپس نمونه‌ها در شش دسته‌ خالص، 11، 20، 33، 50 و 100درصد تقلب ساخته شدند. هر تیمار در ده نمونه تهیه و آزمایش‌ها انجام شد. در ادامه به‌منظور تحلیل ویژگی‌های کیفی و طبقه‌بندی داده‌های مستخرج از طیف‌سنج، از روش‌های بازشناسی الگو شامل تحلیل تفکیک خطی (LDA) و ماشین بردار پشتیبان (SVM) استفاده شد. نتایج به‌دست‌آمده نشان داد که طیف‌سنجی مرئی/فروسرخ نزدیک (Vis/NIR) قادر به تفکیک نمونه‌های روغن‌زیتون بر اساس درصد‌های مختلف تقلب پومیس است. هرچند روش LDA توانست باصحت قابل قبولی نمونه‌های روغن‌زیتون را باتوجه‌به نرخ تقلب دسته‌بندی کند، اما روش SVM باصحت آموزش 69/96درصد و اعتبار‌سنجی 86/95 درصد از صحت و برازش مطلوب‌تری برخوردار بود. طبق نتایج، تابع خطی، به‌عنوان بهترین تابع برای ساخت مدل‌های دسته‌بندی به روش SVM پیشنهاد شد.

چکیده تصویری

امکان‌سنجی به‌کار‌گیری طیف‌سنجی مرئی/فروسرخ نزدیک برای تشخیص تقلب روغن تفاله زیتون با روش‌های شناسایی LDA و SVM

تازه های تحقیق

  • طیف‌سنجی (Vis/NIR) قادر به تفکیک نمونه‌های روغن‌زیتون بر اساس نرخ تقلب پومیس است.
  • روش SVM باصحت آموزش 69/96 و صحت اعتبار‌سنجی 21/94 بهترین روش برای دسته‌بندی نمونه‌ها بود.
  • بر اساس نتایج حاصله، تابع خطی، بهترین تابع برای ساخت مدل دسته‌بندی به روش SVM تعیین شد.
  • نخستین‌بار است که محدوده پایین فروسرخ نزدیک یعنی بازه 850-780 نانو‌متر در کنار ناحیه مرئی به‌منظور شناسایی دقیق تقلب پومیس در انواع مختلف روغن‌زیتون بهره‌گیری شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Feasibility of Visible/Near Infrared Spectroscopy in order to detect pomace olive oil fraud with LDA and SVM detection methods

نویسندگان [English]

  • shirin asadian 1
  • ahmad banakar 2
  • Bahareh Jamshidi 3
1 Biosystem engineering. تربیت modares university, tehran , iran
2 Tarbiat Modares University
3 Associate Professor, Agricultural Engineering Research Institute, Agricultural Research, Education and Extension Organization (AREEO)
چکیده [English]

Olive is a Mediterranean fruit that is cultivated mainly for its oil. Extra virgin olive oil has always been the attention and demand of users. Therefore, fraud in virgin and extra virgin olive oils is observed by adding valuable food oils and lower prices such as canola, sunflower, olive pomace, etc. Fraud detection with conventional methods such as gas chromatography is difficult, time-consuming, and requires sample and operator preparation. For this reason, the use of non-destructive technologies for fraud detection is important. In this research, detection of adulteration of pomace oil (olive pomace oil) was investigated using visible/near-infrared spectroscopy (Vis/NIR) technology. Three types of extra virgin olive oil, virgin and refined olive oil were used for sampling. Moreover, the samples were made in six categories of pure, 11, 20, 33, 50 and 100% fraud. Each treatment was prepared and tested in ten samples. Next, in order to analyze the qualitative features and classify the data extracted from the spectrometer, pattern recognition methods including linear discriminant analysis (LDA) and support vector machine (SVM) were used. The obtained results showed that visible/near infrared (Vis/NIR) spectroscopy is able to distinguish olive oil samples based on different percentages of pomace adulteration. Although the LDA method was able to classify olive oil samples with acceptable accuracy according to the adulteration rate, the SVM method had a better accuracy and fit with a training accuracy of 96.69% and a validation of 94.21%. According to the results, the linear function was suggested as the best function for building the classification models using the SVM method.

کلیدواژه‌ها [English]

  • Fraud
  • . Linear Discriminant Analysis
  • Pomace Oil
  • . Support Vector Machine
[1]         M. Rashvand, O. Mahmood, H. Mobli, and M. Soltanifiroz, “Evaluation of olive oil adulteration detection system based on image processing and dielectric spectroscopy,” Agric. Mach. Mech. Res. J., vol. 6, no. 2, pp. 29–19, 2017.
[2]         B. Vega-Márquez, I. Nepomuceno-Chamorro, N. Jurado-Campos, and C. Rubio-Escudero, “Deep Learning Techniques to Improve the Performance of Olive Oil Classification,” Front. Chem., vol. 7, no. January, pp. 1–10, 2020, doi: 10.3389/fchem.2019.00929.
[3]         A. M. Giuffré, M. Caracciolo, C. Zappia, M. Capocasale, and M. Poiana, “Effect of heating on chemical parameters of extra virgin olive oil, pomace olive oil, soybean oil and palm oil,” Ital. J. Food Sci., vol. 30, no. 4, pp. 715–739, 2018.
[4]         M. I. Covas, “Olive oil and the cardiovascular system,” Pharmacol. Res., vol. 55, no. 3, pp. 175–186, 2007, doi: 10.1016/j.phrs.2007.01.010.
[5]         C. Fauhl, F. Reniero, and C. Guillou, “1H NMR as a tool for the analysis of mixtures of virgin olive oil with oils of different botanical origin,” Magn. Reson. Chem., vol. 38, no. 6, pp. 436–443, 2000, doi: 10.1002/1097-458X(200006)38:6<436::AID-MRC672>3.0.CO;2-X.
[6]         S. Ok, “Detection of olive oil adulteration by low-field NMR relaxometry and UV-Vis spectroscopy upon mixing olive oil with various edible oils,” Grasas y Aceites, vol. 68, no. 1, pp. 1–13, 2017, doi: 10.3989/gya.0678161.
[7]         S. A. Mahesar, M. Lucarini, A. Durazzo, A. Santini, A. I. Lampe, and J. Kiefer, “Application of Infrared Spectroscopy for Functional Compounds Evaluation in Olive Oil : A Current Snapshot,” vol. 2019, 2019.
[8]         S. Cicerale, X. A. Conlan, A. J. Sinclair, and R. S. J. Keast, “Chemistry and health of olive oil phenolics,” Crit. Rev. Food Sci. Nutr., vol. 49, no. 3, pp. 218–236, 2009, doi: 10.1080/10408390701856223.
[9]         P. Vossen, “Olive oil: History, production, and characteristics of the world’s classic oils,” HortScience, vol. 42, no. 5, pp. 1093–1100, 2007, doi: 10.21273/hortsci.42.5.1093.
[10]       R. Rodriguez-Rodriguez, M. D. Herrera, M. A. de Sotomayor, and V. Ruiz-Gutierrez, “Pomace Olive Oil Improves Endothelial Function in Spontaneously Hypertensive Rats by Increasing Endothelial Nitric Oxide Synthase Expression,” Am. J. Hypertens., vol. 20, no. 7, pp. 728–734, 2007, doi: 10.1016/j.amjhyper.2007.01.012.
[11]       K. Antonopoulos, N. Valet, D. Spiratos, and G. Siragakis, “Olive oil and pomace olive oil processing,” Grasas y Aceites, vol. 57, no. 1, pp. 56–67, 2006, doi: 10.3989/gya.2006.v57.i1.22.
[12]       F. Pérez-Jiménez, J. Ruano, P. Perez-Martinez, F. Lopez-Segura, and J. Lopez-Miranda, “The influence of olive oil on human health: Not a question of fat alone,” Mol. Nutr. Food Res., vol. 51, no. 10, pp. 1199–1208, 2007, doi: 10.1002/mnfr.200600273.
[13]       L. Di Giovacchino, S. Sestili, and D. Di Vincenzo, “Influence of olive processing on virgin olive oil quality,” Eur. J. Lipid Sci. Technol., vol. 104, no. 9–10, pp. 587–601, 2002, doi: 10.1002/1438-9312(200210)104:9/10<587::AID-EJLT587>3.0.CO;2-M.
[14]       V. Maestrello, P. Solovyev, L. Bontempo, L. Mannina, and F. Camin, “Nuclear magnetic resonance spectroscopy in extra virgin olive oil authentication,” Compr. Rev. Food Sci. Food Saf., vol. 21, no. 5, pp. 4056–4075, 2022, doi: 10.1111/1541-4337.13005.
[15]       D. Tura, C. Gigliotti, S. Pedò, O. Failla, D. Bassi, and A. Serraiocco, “Influence of cultivar and site of cultivation on levels of lipophilic and hydrophilic antioxidants in virgin olive oils (Olea Europea L.) and correlations with oxidative stability,” Sci. Hortic. (Amsterdam)., vol. 112, no. 1, pp. 108–119, 2007, doi: 10.1016/j.scienta.2006.12.036.
[16]       S. K. Dwivedi, M. Vishwakarma, and P. A. Soni, “Advances and Researches on Non Destructive Testing: A Review,” Mater. Today Proc., vol. 5, no. 2, pp. 3690–3698, 2018, doi: 10.1016/j.matpr.2017.11.620.
[17]       H. Xiao, L. Feng, D. Song, K. Tu, J. Peng, and L. Pan, “Grading and sorting of grape berries using visible-near infrared spectroscopy on the basis of multiple inner quality parameters,” Sensors (Switzerland), vol. 19, no. 11, 2019, doi: 10.3390/s19112600.
[18]       P. Galvin-King, S. A. Haughey, and C. T. Elliott, “Garlic adulteration detection using NIR and FTIR spectroscopy and chemometrics,” J. Food Compos. Anal., vol. 96, p. 103757, 2021, doi: 10.1016/j.jfca.2020.103757.
[19]       M. De Luca et al., “Derivative FTIR spectroscopy for cluster analysis and classification of morocco olive oils,” Food Chem., vol. 124, no. 3, pp. 1113–1118, 2011, doi: 10.1016/j.foodchem.2010.07.010.
[20]       R. De Bei et al., “Non-destructive measurement of grapevine water potential using near infrared spectroscopyDe Bei, R., Cozzolino, D., Sullivan, W., Cynkar, W., Fuentes, S., Dambergs, R., Pech, J., & Tyerman, S. D. (2011). Non-destructive measurement of grapevine water pote,” Aust. J. Grape Wine Res., vol. 17, no. 1, pp. 62–71, 2011, doi: 10.1111/j.1755-0238.2010.00117.x.
[21]       X. Li et al., “Review of NIR spectroscopy methods for nondestructive quality analysis of oilseeds and edible oils,” Trends Food Sci. Technol., vol. 101, no. March, pp. 172–181, 2020, doi: 10.1016/j.tifs.2020.05.002.
[22]       S. Bureau and B. Gouble, “rapid and non-destructive analysis of apricot fruit quality using ft-near infrared spectroscopy,” Mater. Struct., no. 2014, pp. 32–35, 2015.
[23]       A. C. de Lima, L. Aceña, M. Mestres, and R. Boqué, “An Overview of the Application of Multivariate Analysis to the Evaluation of Beer Sensory Quality and Shelf-Life Stability,” Foods, vol. 11, no. 14, pp. 1–15, 2022, doi: 10.3390/foods11142037.
[24]       A. Amari, N. El Bari, and B. Bouchikhi, “Electronic Nose for Anchovy Freshness Monitoring Based on Sensor Array and Pattern Recognition Methods: Principal Components Analysis, Linear Discriminant Analysis and Support Vector Machine,” Int. J. Comput., vol. 6, no. 3, pp. 61–67, 2014, doi: 10.47839/ijc.6.3.452.
[25]       M. W. Huang, C. W. Chen, W. C. Lin, S. W. Ke, and C. F. Tsai, “SVM and SVM ensembles in breast cancer prediction,” PLoS One, vol. 12, no. 1, pp. 1–14, 2017, doi: 10.1371/journal.pone.0161501.
[26]       Z. Liu and J. Tan, “Qualitative and quantitative detection of Sudan I and II adulterated in chili powders by front-face synchronous fluorescence spectroscopy : Aggregation-induced emission in solid food,” pp. 1–21, 2022.
[27]       N. Abu-khalaf and M. Hmidat, “Visible / Near Infrared ( VIS / NIR ) spectroscopy as an optical sensor for evaluating olive oil quality,” Comput. Electron. Agric., vol. 173, no. December 2019, p. 105445, 2020, doi: 10.1016/j.compag.2020.105445.
[28]       H. Cen, Y. He, and M. Huang, “Combination and comparison of multivariate analysis for the identification of orange varieties using visible and near infrared reflectance spectroscopy,” Eur. Food Res. Technol., vol. 225, no. 5–6, pp. 699–705, 2007, doi: 10.1007/s00217-006-0470-2.
[29]       Y. G. M. Kongbonga et al., “Characterization of Vegetable Oils by Fluorescence Spectroscopy,” Food Nutr. Sci., vol. 02, no. 07, pp. 692–699, 2011, doi: 10.4236/fns.2011.27095.
[30]       T. Wang, Y. Zhang, Y. Liu, Z. Zhang, and T. Yan, “Intelligent Evaluation of Stone Cell Content of Korla Fragrant Pears by Vis/NIR Reflection Spectroscopy,” Foods, vol. 11, no. 16, 2022, doi: 10.3390/foods11162391.
[31]       m Zarezade, Mohammad Reza, abonajmi, M. Ghasemi-varnamkhasti, and  f azarikia, “Estimation of the Best Classification Algorithm and Fraud Detection of Olive Oil by Olfaction Machine,” vol. 11, no. 2, pp. 371–383, 2021, doi: 10.22067/jam.v11i2.84105. [In persion]
[32]       M. Bahmaei, R. Nazeri, F. Kalantari, N. T. Branch, and S. B. Company, “Archive of SID Detection of adulteration in canola-virgin olive admixture using instrumental gas liquid chromatography and UV spectroscopy”. [In persion]