ارزیابی مکانیسم گرفتگی غشا در شفاف‌سازی شربت خرما توسط فرایند فراپالایش

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و صنایع غذایی، دانشکده داروسازی، واحد علوم پزشکی، دانشگاه آزاد اسلامی، تهران، ایران

2 عضو هیات علمی گروه فناوری صنایع غذایی پردیس ابوریحان- دانشگاه تهران

3 گروه علوم و صنایع غذایی، دانشکده ی داروسازی، دانشگاه علوم پزشکی آزاد اسلامی، تهران، ایران

4 گروه مهندسی بیولوژیکی و کشاورزی، دانشگاه A&M تگزاس، ایستگاه کالج، تگزاس، ایالات متحده آمریکا.

5 گروه فناوری صنایع غذایی، دانشکده فناوری کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، تهران، ایران.

چکیده

استفاده از تکنولوژی غشایی در شفاف‌سازی قند مایع خرما می‌تواند موجب بهبود کیفیت شربت قند شود. همچنین کاهش مصرف عوامل شیمیایی شفاف کننده و صرفه‌جویی بیشتر در مصرف انرژی از مزایای این تکنولوژی است. این تحقیق به منظور بررسی کارآیی فرایند غشایی در شفاف سازی شربت خرما و ارزیابی مکانیسمگرفتگی غشایی حاصل از مواد آلی و غیر آلی موجود در قند مایع خرما انجام شد. در این مطالعه به بررسی اثر دما، دبی جریان و فشار هیدرواستاتیکی بر شار تراوش در فرایند فراپالایش پرداخته شد و مکانیسم گرفتگی غشایی در شرایط عملیاتی مختلف مورد ارزیابی قرار گرفت. علاوه بر این، تجزیه و تحلیل گرفتگی با استفاده از مدل‌های هرمیا انجام شد. نتایج نشان داد مکانیسم اصلی گرفتگی در فرایند غشایی شفاف سازی قند مایع خرما مکانیسم تشکیل لایه کیک است.

چکیده تصویری

ارزیابی مکانیسم گرفتگی غشا در شفاف‌سازی شربت خرما توسط فرایند فراپالایش

تازه های تحقیق

  • اولترافیلتراسیون جریان متقاطع برای شفاف سازی شیره خرما بدون پکتینه ایجاد شد.
  • مدل­های هرمیا جهت تفسیر پدیده گرفتگی غشا در فیلتراسیون جریان متقاطع شربت خرما استفاده شد.
  • مکانیسم فیلتراسیون کیک بهترین مدل برای شفافسازی شربت خرما به نظر می رسد زیرا می­تواند پس از تمیز کردن مناسب، احیا گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the mechanism of membrane fouling in the clarification of date syrup by the ultrafiltration process

نویسندگان [English]

  • Parnian Motaghian 1
  • Mostafa Soltani 3
  • Ahmad Kalbasi-Ashtari 4
  • Mohammad Dehghani 5
1 Department of Food Science and Technology, Faculty of Pharmacy, Medical Sciences Branch, Islamic Azad University, Tehran, Iran.
2
3 Department of Food Science and Technology, Faculty of Pharmacy, Medical Sciences Branch, Islamic Azad University, Tehran, Iran
4 Biological and Agricultural Engineering Department, Texas A&M University, College Station, Texas, USA.
5 Department of Food Technology, Faculty of Agricultural Technology, College of Agriculture and Natural Resource, University of Tehran, Tehran, Iran.
چکیده [English]

The usage of membrane technology can improve the quality of sugar syrup in the clarification of date juice. Also, reducing the consumption of clarifying chemical agents and saving more energy are among the advantages of this technology. This research was conducted in order to investigate the efficiency of the membrane process in the clarification of date syrup and to evaluate the mechanism of membrane clogging resulting from organic and inorganic substances in date liquid sugar. In this study, the effect of temperature, flow rate and hydrostatic pressure on the permeate flux in the ultrafiltration process was investigated, and the membrane fouling mechanism was evaluated in different operating conditions. In addition, fouling analysis was performed using Hermia models. The results showed that the main mechanism of fouling in the membrane process of sugar syrup clarification is the mechanism of cake layer formation.

کلیدواژه‌ها [English]

  • date syrup
  • electric field
  • ultrafiltration
  • color removal
  • clarification
  • fouling mechanism
[1]           Aghdam, M.A., Mirsaeedghazi, H., Aboonajmi, M., and Kianmehr, M. (2015)., Effect of ultrasound on different mechanisms of fouling during membrane clarification of pomegranate juice. IFSET, 30, p. 127-131. doi: https://doi.org/10.1016/j.ifset.2015.05.008
[2]           Ahdno, H. and Jafarizadeh-Malmiri, H. (2017). Development of a sequenced enzymatically pre-treatment and filter pre-coating process to clarify date syrup. FBP, 101, p. 193-204. doi: https://doi.org/10.1016/j.fbp.2016.11.008
[3]           Aleid, S.M., Date fruit processing and processed products. Dates: postharvest science, processing technology and health benefits, (2013): p. 171-202. doi: https://doi.org/ 10.9755/ejfa.v26i11.18990
[4]           Aleid, S.M. (2023). Date Food Products, in Date Palm., CABI GB, p. 486-519. doi: https://doi.org/10.1079/9781800620209.0015
[5]           Alsobh, A., Zin, M.M., Vatai, G., and Bánvölgyi, S. (2022). The Application of Membrane Technology in the Concentration and Purification of Plant Extracts: A Review. Polytech., Chem. Eng., 66(3), p. 394-408. doi: https://doi.org/10.3311/PPch.19487
[6]           Ashraf, Z. and Hamidi-Esfahani, Z. (2011). Date and date processing: a review. Food Rev. Int., 27(2), p. 101-133. doi: https://doi.org/10.1080/87559129.2010.535231
[7]           Bagci, P.O. (2014). Effective clarification of pomegranate juice: A comparative study of pretreatment methods and their influence on ultrafiltration flux. J. Food Eng., 141, p. 58-64. doi: https://doi.org/10.1016/j.jfoodeng.2014.05.009
[8]           Barakat, H. and Alfheeaid, H.A. (2023). Date Palm Fruit (Phoenix dactylifera) and Its Promising Potential in Developing Functional Energy Bars: Review of Chemical, Nutritional, Functional, and Sensory Attributes. Nutrients, 15(9), p. 2134. doi: https://doi.org/10.3390/nu15092134
[9]           Castro-Muñoz, R., Correa-Delgado, M., Córdova-Almeida, R., Lara-Nava, D., Chávez-Muñoz, M., Velásquez-Chávez, V.F., Hernández-Torres, C.E., Gontarek-Castro, E., and Ahmad, M.Z. (2022). Natural sweeteners: Sources, extraction and current uses in foods and food industries. Food Chem., 370, p. 130991. doi: https://doi.org/10.1016/j.foodchem.2021.130991
[10]         Castro-Muñoz, R., Díaz-Montes, E., Cassano, A., and Gontarek, E. (2021). Membrane separation processes for the extraction and purification of steviol glycosides: an overview. Crit. Rev. Food Sci. Nutr, 61(13), p. 2152-2174. doi: https://doi.org/10.1080/10408398.2020.1772717
[11]         Castro‐Muñoz, R., Fíla, V., Barragán‐Huerta, B.E., Yáñez‐Fernández, J., Piña‐Rosas, J.A., and Arboleda‐Mejía, J. (2018). Processing of Xoconostle fruit (Opuntia joconostle) juice for improving its commercialization using membrane filtration. J. Food Process. Preserv., 42(1), p. e13394. doi: https://doi.org/10.1111/jfpp.13394
[12]         Conidi, C., Cassano, A., Caiazzo, F., and Drioli, E. (2017). Separation and purification of phenolic compounds from pomegranate juice by ultrafiltration and nanofiltration membranes. J. Food Eng., 195, p. 1-13. doi: https://doi.org/10.1016/j.jfoodeng.2016.09.017
[13]         Criscuoli, A. and Drioli, E. (2020). Date juice concentration by vacuum membrane distillation. Sep. Purif. Technol., 251: p. 117301. doi: https://doi.org/10.1016/j.seppur.2020.117301
[14]         Echegaray, N., Gullón, B., Pateiro, M., Amarowicz, R., Misihairabgwi, J.M., and Lorenzo, J.M. (2023). Date fruit and its by-products as promising source of bioactive components: Food Rev. Int., 39(3), p. 1411-1432. doi: https://doi.org/10.1080/87559129.2021.1934003
[15]         El Batouti, M., Alharby, N.F., and Elewa, M.M. (2021). Review of new approaches for fouling mitigation in membrane separation processes in water treatment applications. Separations, 9(1), p. 1. doi: https://doi.org/10.3390/separations9010001
[16]         Enevoldsen, A.D., Hansen, E.B., and Jonsson, G. (2007). Electro-ultrafiltration of industrial enzyme solutions. J. Membr. Sci., 299(1-2), p. 28-37. doi: https://doi.org/10.1016/j.memsci.2007.04.021
[17]         Eslami, B., Labbafi, M., and Khodaiyan, F. (2018). Date juice decolorized by ultra-filtration and its use with stevioside sweetener in beverage formulation. J. Food Process Eng., 1(1), p. 39-46.
[18]         Fathi, G., Rezaei, K., Emam-Djomeh, Z., and Hamed, M. (2013). Decolorization of Iranian Date Syrup by Ultrafiltra tion. J. Agric. Sci. Technol., 15: p. 1361-1371. URI: http://hdl.handle.net/123456789/4180
[19]         Firmán, L.R., Pagliero, C., Ochoa, N.A., and Marchese, J. (2015). PVDF/PMMA membranes for lemon juice clarification: fouling analysis. Desalin. Water Treat., 55(5), p. 1167-1176. doi: https://doi.org/10.1080/19443994.2014.925836
[20]         Gulec, H.A., Bagci, P.O., and Bagci, U. (2017). Clarification of apple juice using polymeric ultrafiltration membranes: A comparative evaluation of membrane fouling and juice quality. Food Bioprocess Technol., 10, p. 875-885. doi: https://doi.org/10.1007/s11947-017-1871-x
[21]         Jaffrin, M.Y. (2008). Dynamic shear-enhanced membrane filtration: a review of rotating disks, rotating membranes and vibrating systems. J. Membr. Sci., 324(1-2), p. 7-25. doi: https://doi.org/10.1016/j.memsci.2008.06.050
[22]         Jin, X., Jawor, A., Kim, S., and Hoek, E.M. (2009). Effects of feed water temperature on separation performance and organic fouling of brackish water RO membranes. Desalination, 239(1-3), p. 346-359. doi: https://doi.org/10.1016/j.desal.2008.03.026
[23]         Katibi, K.K., Mohd Nor, M.Z., Yunos, K.F.M., Jaafar, J., and Show, P.L. (2023). Strategies to Enhance the Membrane-Based Processing Performance for Fruit Juice Production: A Review. Membranes, 13(7), p. 679. doi: https://doi.org/10.3390/membranes13070679
[24]         Kim, Y., Lee, S., and Hong, S. (2012). Influence of solution chemistry on the surface heterogeneity of reverse osmosis membrane. Desalin. Water Treat., 43(1-3), p. 308-313. doi: https://doi.org/10.1080/19443994.2012.672212
[25]         Kürzl, C. and Kulozik, U. (2023). Comparison of the efficiency of pulsed flow membrane cleaning in hollow fibre (HFM) and spiral-wound microfiltration membranes (SWM). FBP, 139, p. 166-177. doi: https://doi.org/10.1016/j.fbp.2023.03.012
[26]         Ladewig, B.A.S. (2018) Fundumentals of membrane bioreactors: Materials, Systems and Membrane Fouling. Springer Singapore. doi: https://doi.org/10.1007/978-981-10-2014-8
[27]         Lotfi, L., Kalbasi-Ashtari, A., Hamedi, M., and Ghorbani, F. (2015). Effects of sulfur water extraction on anthocyanins properties of tepals in flower of saffron (Crocus sativus L). JFST, 52(2), p. 813-821. doi: https://doi.org/10.1007/s13197-013-1058-z
[28]         Makhlouf-Gafsi, I., Krichen, F., Mansour, R.B., Mokni, A., Sila, A., Bougatef, A., Blecker, C., Attia, H., and Besbes, S. (2018). Ultrafiltration and thermal processing effects on Maillard reaction products and biological properties of date palm sap syrups (Phoenix dactylifera L.). Food Chem., 256, p. 397-404. doi: https://doi.org/10.1016/j.foodchem.2018.02.145
[29]         Mirsaeedghazi, H., Mousavi, S.M., Emam‐jomeh, Z., Rezaei, K., Aroujalian, A., and Navidbakhsh, M. (2012). Comparison between ultrafiltration and microfiltration in the clarification of pomegranate juice. J. Food Process Eng., 35(3), p. 424-436. doi: https://doi.org/10.1111/j.1745-4530.2010.00598.x
[30]         Nematzadeh, M., Samimi, A., Mohebbi-Kalhori, D., Shokrollahzadeh, S., and Bide, Y. (2022). Forward osmosis dewatering of seawater and pesticide contaminated effluents using the commercial fertilizers and zinc-nitrate blend draw solutions. Sci. Total Environ., 820, p. 153376. doi: https://doi.org/10.1016/j.scitotenv.2022.153376
[31]         Nematzadeh, M., Samimi, A., and Shokrollahzadeh, S. (2016). Application of sodium bicarbonate as draw solution in forward osmosis desalination: influence of temperature and linear flow velocity. Desalin. Water Treat., 57(44), p. 20784-20791. doi: https://doi.org/10.1080/19443994.2015.1111816
[32]         Nematzadeh, M., Shokrollahzadeh, S., Samimi, A., and Mohebbi-Kalhori, D. (2020). Synergistic effect of amino-acids and metal salts as draw solutions to enhance the performance of fertilizer-drawn forward osmosis. Environ. Sci. Water Res. Technol., 6(11), p. 3121-3131. doi: https://doi.org/10.1039/D0EW00599A
[33]         Ridley, B.L., O'Neill, M.A., and Mohnen, D. (2001). Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry, 57(6), p. 929-967. doi: https://doi.org/10.1016/S0031-9422(01)00113-3
[34]         Seguí, L., Calabuig‐Jiménez, L., Betoret, N., and Fito, P. (2015). Physicochemical and antioxidant properties of non‐refined sugarcane alternatives to white sugar. Int. J. Food Sci. Technol., 50(12), p. 2579-2588. doi: https://doi.org/10.1111/ijfs.12926
[35]         Sharma, C., Mondal, S., Majumdar, G., and De, S. (2012). Clarification of Stevia extract by ultrafiltration: selection criteria of the membrane and effects of operating conditions. FBP, 90(3), p. 525-532. doi: https://doi.org/10.1016/j.fbp.2011.10.002
[36]         Shavandi, M., Taghdir, M., Abbaszadeh, S., Sepandi, M., and Parastouei, K. (2020). Modeling the inactivation of Bacillus cereus by infrared radiation in paprika powder (Capsicum annuum). J. Food Saf., 40(4), p. e12797. doi: https://doi.org/10.1111/jfs.12797
[37]         Shen, Y. and Badireddy, A.R. (2021). A Critical Review on Electric Field-Assisted Membrane Processes: Implications for Fouling Control, Water Recovery, and Future Prospects. Membranes, 11(11), p. 820. doi: https://doi.org/10.3390/membranes11110820
[38]         Sridhar, K. and Charles, A.L. (2019). In vitro antioxidant activity of Kyoho grape extracts in DPPH and ABTS assays: Estimation methods for EC50 using advanced statistical programs. Food Chem., 275, p. 41-49. doi: https://doi.org/10.1016/j.foodchem.2018.09.040
[39]         Tanudjaja, H.J., Anantharaman, A., Ng, A.Q.Q., Ma, Y., Tanis-Kanbur, M.B., Zydney, A.L., and Chew, J.W. (2022). A review of membrane fouling by proteins in ultrafiltration and microfiltration. JWPE, 50, p. 103294. doi: https://doi.org/10.1016/j.jwpe.2022.103294
[40]         Tavakolipour, H., Kalbasi‐Ashtari, A., and Mokhtarian, M. (2020). Effects of coating pistachio kernels with mixtures of whey protein and selected herbal plant extracts on growth inhibition of Aspergillus flavus and prevention of aflatoxin during storage. J. Food Saf., 40(1), p. e12711. doi: https://doi.org/10.1111/jfs.12711
[41]         Uppu, A., Chaudhuri, A., and Das, S.P. (2019). Numerical modeling of particulate fouling and cake-enhanced concentration polarization in roto-dynamic reverse osmosis filtration systems. Desalination, 468, p. 114053. doi: https://doi.org/10.1016/j.desal.2019.06.019
[42]         Wang, Z., Dong, W., Hu, X., Sun, T., Wang, T., and Sun, Y. (2017). Low energy consumption vortex wave flow membrane bioreactor. Water Sci. Technol., 76(9), p. 2465-2472. doi: https://doi.org/10.2166/wst.2017.400
[43]         Wavhal, D.S. and Fisher, E.R. (2005). Modification of polysulfone ultrafiltration membranes by CO2 plasma treatment. Desalination, 172(2), p. 189-205. doi: https://doi.org/10.1016/j.desal.2004.06.201
[44]         Yang, Q., Luo, J., Guo, S., Hang, X., Chen, X., and Wan, Y. (2019). Threshold flux in concentration mode: Fouling control during clarification of molasses by ultrafiltration. J. Membr. Sci., 586, p. 130-139. doi: https://doi.org/10.1016/j.memsci.2019.05.063