[1] Speroni, C. S., Bender, A.B.B., Stiebe, J., Ballus, C. A., Ávila, P. F., Goldbeck, R., Morisso, F. D. P., da Silva, L. P., & Emanuelli, T. (2020). Granulometric fractionation and micronization: A process for increasing soluble dietary fiber content and improving technological and functional properties of olive pomace. LWT., 130, 109526.
[2] Dermeche, S., Nadour, M., Larroche, C., Moulti-Mati, F., & Michaud, P. (2013). Olive mill wastes: Biochemical characterizations and valorization strategies. Process Biochem., 48(10), 1532-1552.
[3] Nunes, L., Matias, J., & Catalão, J. (2016). Biomass combustion systems, A review on the physical and chemical properties of the ashes. Renew. Sustain. Energy Rev., 53, 235-242.
[4] Ötles, S., & Ozgoz, S. (2014). Health effects of dietary fiber. Acta Sci. Pol. Technol. Aliment., 13(2), 191-202.
[5] Sezer, D. B., Ahmed, J., Sumnu, G., & Sahin, S. (2021). Green processing of sour cherry (Prunus cerasus L.) pomace, process optimization for the modification of dietary fibers and property measurements. J. Food Meas. Charact., 15(4), 3015-3025.
[6] Moczkowska, M., Karp, S., Niu, Y., & Kurek, M. A. (2019). Enzymatic, enzymatic-ultrasonic and alkaline extraction of soluble dietary fibre from flaxseed–A physicochemical approach. Food Hydrocoll., 90, 105-112.
[7] Chawla, R., & Patil, G. (2010). Soluble dietary fiber. Compr. Rev. Food Sci. Food Saf., 9(2), 178-196.
[8] Du, X., Wang, L., Huang, X., Jing, H., Ye, X., Gao, W., Bai, X., & Wang, H. (2021). Effects of different extraction methods on structure and properties of soluble dietary fiber from defatted coconut flour. LWT., 143, 111031.
[9] Surampudi, P., Enkhmaa, B., Anuurad, E., & Berglund, L. (2016). Lipid lowering with soluble dietary fiber. Curr. Atheroscler. Rep., 18(12), 1-13.
[10] Tang, C., Wu, L., Zhang, F., Kan, J., & Zheng, J. (2022). Comparison of different extraction methods on the physicochemical, structural properties, and in vitro hypoglycemic activity of bamboo shoot dietary fibers. Food Chem., 386, 132642.
[11] Difonzo, G., Troilo, M., Squeo, G., Pasqualone, A., & Caponio, F. (2021). Functional compounds from olive pomace to obtain high‐added value foods–a review. J. Sci Food Agric., 101(1), 15-26.
[12] Tejada-Ortigoza, V., Garcia-Amezquita, L. E., Serna-Saldívar, S. O., & Welti-Chanes, J. (2016). Advances in the functional characterization and extraction processes of dietary fiber. Food Eng. Rev., 8(3), 251-271.
[13] Jiang, Y., Bai, X., Lang, S., Zhao, Y., Liu, C., & Yu, L. (2019). Optimization of ultrasonic-microwave assisted alkali extraction of arabinoxylan from the corn bran using response surface methodology. Int. J. Biol. Macromol., 128, 452-458.
[14] Sun, J., Zhang, Z., Xiao, F., Wei, Q., & Jing, Z. (2018). Ultrasound-assisted alkali extraction of insoluble dietary fiber from soybean residues. China: Paper presented at the IOP Conference Series, Materials Science and Engineering.
[15] Willemsen, K. L., Panozzo, A., Moelants, K., Debon, S. J., Desmet, C., Cardinaels, R., Moldenaers, P., Wallecan, J., & Hendrickx, M. E. (2017). Physico-chemical and viscoelastic properties of high pressure homogenized lemon peel fiber fraction suspensions obtained after sequential pectin extraction. Food Hydrocoll., 72, 358-371.
[16] Wei, C., Ge, Y., Liu, D., Zhao, S., Wei, M., Jiliu, J., Hu, X., Quan, Z., Wu, Y., & Su, Y. (2022). Effects of high-temperature, high-Pressure, and ultrasonic treatment on the physicochemical properties and structure of soluble dietary fibers of millet bran. Front. Nutr. 18 (8), 820715.
[17] Zheng, Y., Li, Y., Xu, J., Gao, G., & Niu, F. (2018). Adsorption activity of coconut (Cocos nucifera L.) cake dietary fibers, effect of acidic treatment, cellulase hydrolysis, particle size and pH. RSC Adv. 8(6), 2844-2850.
[18] Hawthorne, S. B., Grabanski, C. B., Martin, E., & Miller, D. J. (2000). Comparisons of Soxhlet extraction, pressurized liquid extraction, supercritical fluid extraction and subcritical water extraction for environmental solids, recovery, selectivity and effects on sample matrix. J. Chromatogr. A., 892(1-2), 421-433.
[19] Wang, K., Li, M., Wang, Y., Liu, Z., & Ni, Y. (2021). Effects of extraction methods on the structural characteristics and functional properties of dietary fiber extracted from kiwifruit (Actinidia deliciosa). Food Hydrocoll., 110, 106162.
[20] Cheng, L., Zhang, X., Hong, Y., Li, Z., Li, C., & Gu, Z. (2017). Characterisation of physicochemical and functional properties of soluble dietary fibre from potato pulp obtained by enzyme-assisted extraction. Int. J. Biol. Macromol., 101, 1004-1011.
[21] Horwitz, W. (2010). Official methods of analysis of AOAC International. Volume I, agricultural chemicals, contaminants, drugs/edited by William Horwitz: Gaithersburg (Maryland): AOAC International, 1997.
[22] Wang, L., Xu, H., Yuan, F., Fan, R., & Gao, Y. (2015). Preparation and physicochemical properties of soluble dietary fiber from orange peel assisted by steam explosion and dilute acid soaking. Food Chem., 185, 90-98.
[23] Femenia, A., Lefebvre, A. C., Thebaudin, J. Y., Robertson, J. A., & Bourgeois, C. M. (1997). Physical and sensory properties of model foods supplemented with cauliflower fiber. J. Food Sci., 62(4), 635-639.
[24] AACC. (2000). Approved methods of the American association of cereal chemists (Vol. 1). USA, American Association of Cereal Chemists.
[25] Kothawale, S. S., & Dhamole, P. B. (2022). Enhanced extraction of soluble dietary fibre and seed oil from tomato pomace. Indian Chem. Eng., 64(3), 326-335.
[26] Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C., & Attia, H. (2011). Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chem., 124(2), 411-421.
[27] Jiang, Y., Yin, H., Zheng, Y., Wang, D., Liu, Z., Deng, Y., & Zhao, Y. (2020). Structure, physicochemical and bioactive properties of dietary fibers from Akebia trifoliata (Thunb.) Koidz. seeds using ultrasonication/shear emulsifying/microwave-assisted enzymatic extraction. Food Res. Int., 136, 109348.
[28] Karra, S., Sebii, H., Yaich, H., Bouaziz, M. A., Blecker, C., Danthine, S., Attia, H., & Besbes, S. (2020). Effect of extraction methods on the physicochemical, structural, functional, and antioxidant properties of the dietary fiber concentrates from male date palm flowers. J. Food Biochem., 44(6), e13202.
[29] Chaturvedi, V., & Verma, P. (2013). An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech., 3(5), 415-431.
[30] Ding, Q., Li, Z., Wu, W., Su, Y., Sun, N., Luo, L., Ma, H., & He, R. (2020). Physicochemical and functional properties of dietary fiber from Nannochloropsis oceanica: A comparison of alkaline and ultrasonic-assisted alkaline extractions. LWT., 133, 110080.
[31] Irinislimane, H., & Belhaneche-Bensemra, N. (2017). Extraction and characterization of starch from oak acorn, sorghum, and potato and adsorption application for removal of maxilon red GRL from wastewater. Chem. Eng. Commun., 204(8), 897-906.
[32] Milošević, M.M., & Antov, M.G. (2022). Pectin from butternut squash (Cucurbita moschata)–The effect of enzyme-assisted extractions on fiber characteristics and properties. Food Hydrocoll., 123, 107201.
[33] Wang, J., Rosell, C.M., & de Barber, C.B. (2002). Effect of the addition of different fibres on wheat dough performance and bread quality. Food Chem., 79(2), 221-226.
[34] Bhatt, S., & Gupta, M. (2022). Exploration of soluble dietary fiber extraction technique for enhancing physicochemical and structural properties of mango and pomegranate peel. Biomass Convers. Biorefin., 1-16.
[35] Yu, G., Bei, J., Zhao, J., Li, Q., & Cheng, C. (2018). Modification of carrot (Daucus carota Linn. var. Sativa Hoffm.) pomace insoluble dietary fiber with complex enzyme method, ultrafine comminution, and high hydrostatic pressure. Food Chem. 257, 333-340.
[36] Robertson, J.A., de Monredon, F.D., Dysseler, P., Guillon, F., Amado, R., & Thibault, J.F. (2000). Hydration properties of dietary fibre and resistant starch: a European collaborative study. LWT., 33(2), 72-79.
[37] Tulyathan, V., Boondee, K., & Mahawanich, T. (2005). Characteristics of starch from water chestnut (Trapa bispinosa Roxb.). J. Food Biochem., 29(4), 337-348.
[38] Bernardo, C. O., Ascheri, J. L. R., Chávez, D. W. H., & Carvalho, C. W. P. (2018). Ultrasound assisted extraction of yam (Dioscorea bulbífera) starch: effect on morphology and functional properties. Starch‐Stärke., 70(5-6), 1700185.
[39] Ekinci, P. D., & Gökbulut, I. (2020). Determination of the Rheological Properties of Red and White Bread Wheat Flours with Different Methods. Preprints, 2020010172.
[40] Zarzycki, P., Wirkijowska, A., Nawrocka, A., Kozłowicz, K., Krajewska, M., Kłosok, K., & Krawęcka, A. (2022). Effect of Moldavian dragonhead seed residue on the baking properties of wheat flour and bread quality. LWT., 155, 112967.
[41] Alsuhaibani, A. M., & Alshawi, A. H. (2022). Effect of the Addition of Different Levels of Chard on the Dough Properties and Physicochemical and Sensory Characteristics of Pan Breads. J. Food Qual., 2022.
[42] Elkatry, H. O., Ahmed, A. R., El-Beltagi, H. S., Mohamed, H. I., & Eshak, N. S. (2022). Biological Activities of Grape Seed By-Products and Their Potential Use as Natural Sources of Food Additives in the Production of Balady Bread. Foods, 11(13), 1948.
[43] Bolek, S. (2020). Olive stone powder: A potential source of fiber and antioxidant and its effect on the rheological characteristics of biscuit dough and quality. Innov. Food Sci. Emerg. Technol., 64, 102423.
[44] Veselinka, Z., Jelena, B., Desimir, K., Danica, M., & Slobodan, M. (2013). Influence of cultivar and growing season on quality properties of winter wheat (Triticum aestivum L.). Afr. J. Agric. Res. 8(21), 2545-2550.
[45] Gunathilake, K., Yalegama, C., & Kumara, A. (2009). Use of coconut flour as a source of protein and dietary fibre in wheat bread. Asian J. Food Agro-Ind., 2(3), 382-391.
[46] Wirkijowska, A., Zarzycki, P., Sobota, A., Nawrocka, A., Blicharz-Kania, A., & Andrejko, D. (2020). The possibility of using by-products from the flaxseed industry for functional bread production. LWT., 118, 108860.
[47] Dziki, D., Cacak-Pietrzak, G., Gawlik-Dziki, U., Sułek, A., Kocira, S., & Biernacka, B. (2019). Effect of Moldavian dragonhead (Dracocephalum moldavica L.) leaves on the baking properties of wheat flour and quality of bread. CyTA-J. Food. 17(1), 536-543.
[48] Nawrocka, A., Miś, A., & Szymańska-Chargot, M. (2016). Characteristics of relationships between structure of gluten proteins and dough rheology–influence of dietary fibres studied by FT-Raman spectroscopy. Food Biophys., 11(1), 81-90.
[49] Aghamirzaei, M., Peighambardoust, S., Azadmard-Damirchi, S., & Majzoob, M. (2018). Effects of Grape Seed Powder as a Functional Ingred ient on Flour Physicochemical Characteristics and Dough Rheological Properties. J. Agr. Sci. Tech., 17, 365-373.
[50] Anil, M. (2007). Using of hazelnut testa as a source of dietary fiber in breadmaking. J. Food Eng., 80(1), 61-67.
[51] Seleiman, M. F., Abdel-Aal, S., Ibrahim, M., & Zahran, G. (2011). Productivity, grain and dough quality of bread wheat grown with different water regimes. J. Agro Crop Sci., 2(1), 11-17.
[52] Liu, J., Shim, Y. Y., Timothy, J. T., Wang, Y., & Reaney, M. J. (2018). Flaxseed gum a versatile natural hydrocolloid for food and non-food applications. Trends Food Sci. Technol., 75, 146-157.
[53] Arı Akın, P., Tayfun, K. E., Tamer, U., & Boyacı, İ. H. (2021). Use of tea fibers as a source of dietary fiber in wheat flour and bread. Cereal Chem., 98(5), 1049-1058.
[54] GÖÇMEN, S. A. M. Ş. A., & TANER, A. S. H. S. (2015). Relationships between farinograph parameters and bread volume, physicochemical traits in bread wheat flours. J. Bahri Dagdas Crop Res., 3(1), 14-18.
[55] Dowell, F., Maghirang, E., Pierce, R., Lookhart, G., Bean, S., Xie, F., Caley, M., Wilson, J., Seabourn, B., & Ram, M. (2008). Relationship of bread quality to kernel, flour, and dough properties. Cereal Chem. 85(1), 82-91.