[1] Abdanan Mehdizadeh, S. (2022). Machine vision based intelligent oven for baking inspection of Cupcake: Design and implementation. J. Mechatronics., 82(2), 102746.
[2] Liu, D., Zeng, X.A. & Sun, D.W. (2015). Recent development and application of hyperspectral imaging for quality evaluation of agricultural products: A review. Crit Rev Food Sci Nut., 55(12), 1744-1757.
[3] Alander, J., Bochko, V., Martinkauppi, B., Saranwong, S. & Mantere, T. (2013). A Review of Optical Nondestructive Visual and Near-Infrared Methods for Food Quality and Safey. International J. Spectroscopy., 2013(3), 341402.
[4] Qamruzzaman, M., Ahmed, F. & Mondal, Md. (2022). An overview on starch-based sustainable hydrogels: Potential application and aspects. J. Polymers & Environment, 29(6), 1-32.
[5] Bosmans, G. M., Lagrain, B., Ooms, N., Fierens, E., & Delcour, J. A. (2013). Biopolymer interactions, water dynamics, and bread crumb firming. J. Agric. Food Chem., 61(19), 4646-4654.
[6] Ribotta, P.D. & Le-Bail, A. (2007). Thermophysical assessment of Bred during staling. Lebensmittel-Wissenschaft und-Technologie., 40(5), 879-884.
[7] Curti, E., Carini, E., Tribuzio, G. & Vittadini, E. (2014). Bread staling: effect of gluten on physico-chemical properties and molecular mobility. LWT-Food Sci. Technol., 59(1), 418-425.
[8] Liu, Z. & Scanlon. (2003). Predicting Mechanical Properties of Bread Crumb. J. Food and Bioproducts Processing., 81(3), 224-238.
[9] Tournier, C., Grass, M., Zope, D., Salles, C. & Bertrand, D. (2012). Characterization of bread breakdown during mastication by image texture analysis. J. Food Eng., 113(4), 615-622.
[10] AACC (American Association of Cereal Chemists). 1995. Method 74-09. Bread Firmness by Universal Testing Machine. Approved Methods (Vol. II). MNUSA: St Paul.
[11] Le-Bail, A., Boumali, K., Jury, V., Ben-Aissa, M.F. & Zuniga, R. (2009). Impact of the kinetic of baking on staling rate and on the mechanical properties of crumb and degassed crumb. J. cereal science., 50(2), 235-240.
[12] Nouri, M., Nasehi, B., Goudarzi, M. & Abdanan Mehdizadeh., S. (2018). Non-destructive Evaluation of bread Staling Using Gray Level Co-occurrence Matrices. Food Analytical Meth., 11(2).
[13] Leiva-Valenzuela, G., Quilaqueo, M., Mariotti-Celis, M.S., Letelier, K., Estay, D. & Pedreschi, F. (2019). Predicting furan content in a fried dough system using image analysis. J. Food Chem., 298(2), 125096.
[14] Polak, A., Coutts, F.K., Murray, P. & Marshal, S. (2019). Use of hyperspectral imaging for cake moisture and hardness prediction. Image Processing, IET., 13(7), 1142-1160.
[15] Rusinek, R., Gancaraz, M. & Agieszka, N. (2020). Application of an electronic with novel method for generation of smellprints for testing the suitability for consumption of wheat bread during 4-day storage. J. Food Sci. Technol., 117, 108665.
[16] Xie, F., Dowell, F. & Sun, X. (2003). Compuarison of Near-Infrared Reflectance Spectroscopy and Texture Analyzer for Measuring Wheat Bread Changes in Storage. J. Cereal Chem., 80(1), 25-29.
[17] Chen, J., Karlsson, C., & Povey, M. (2005). Acoustic envelope detector for crispness assessment of biscuits. J. Texture Studies., 36(2), 139-156.
[18] Jakubczyk, E., Gondek, E. & Tryzno, E. (2017). Application of novel acoustic measurement techniques for texture analysis of co-extruded snacks. Lebensmittel-Wissenschaft und-Technol., 75(4), 582-589.
[19] Carsanba, E., Duerrschmid, K., & Schleining, G. (2018). Assessment of acoustic-mechanical measurements for crispness of wafer products. J. Food Eng., 229, 93-101.
[20] Taniwaki, M., Sakurai, N. & Takahashi, M. (2009). Determination of optimum ripeness for edibility of postharvest melons using nondestructive vibration. Food Research Internationnal., 42(1), 137-141.
[21] Teraski, Sh., Sakurai, N., Zebrowski, J., Murayama, H., Yamamoto, R. & Nevins, D. (2006). Laser Doppler vibrometer analysis of changes in elastic properties of ripening 'La France' pears after postharvest storage. Postharvest Biol. Technol., 42(2), 198-207.
[22] Purhagen, J., Sjoo, M. & Eliasson, A. (2011). Starch affecting anti-staling agents and their function in freestanding and pan-baked bread. Food Hydrocolloids., 25(7), 1656-1666.
[23] AACC (American Association of Cereal Chemists). 2000. Method 44-19, Moisture, Approved Methods. MN, USA: St Paul.
[24] Curti, E., Carini, E., Tribuzio, G. & Vittadini, E. (2014). Bread staling: Effect of gluten on physico-chemical properties and molecular mobility. LWT-Food Sci. Technol., 59(1): 418-425.
[25] Guine, R.P.F. (2020). Evalution of texture of cheese by-products incorporated bread. Braz. J. Food Technol., 23(Pt1), e2019319.
[26] Baixauli, R., Salvador, A., & Fiszman, S. (2008). Textural and colour changes during storage and sensory shelf life of muffins containing resistant starch. European Food Research Technol., 226(3), 523-530.
[27] Janati, S., Abdanan Mehdizadeh, S. & Heydari, M. (2022). Designing, Manufacturing, and evaluating the diagnostic system of carob moth in pomegranate fruit using digital signal processing. J. Computer and Electronics Agric., 192, 106564.
[28] Amraei, S., Abdanan Mehdizadeh, S. & Sallary, S. (2017). Application of computer vision and support vector regression for weight prediction of live broiler chicken. Engineering in agriculture, environment & food., 10(4), 266-271.
[29] Dai, Y., Wang, H., Wang, J., Wang, X., Wang, Zh. & Ge, X. (2022). Prediction of water uality based on SVR by fluorescence Excitation-Emission matrix and UV-Vis absorption. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy., 273(15), 121059.
[30] Al-Mahasneh, M., Aljarrah, M., Rababah, T. & Aludatt, M. (2018). Using MR-STIR and Texture Profile to Track the Effect of Storage Time and Temperature on Pita Bread Staling. Journal of Food uaility., 2018(1), 1-9.
[31] Izadi Najafabadi, L., Le-Bail, A., Hamdami, N., Monteau, J., & Keramat, J. (2014). Impact of baking conditions and storage temperature on staling of fully and part-baked Sangak bread. Journal of Cereal Science., 60(1), 151-156.
[32] Curti, E., Bubici, S., Carini, E., Baroni, S., & Vittadini, E. (2011). Water molecular dynamics during bread staling by nuclear magnetic resonance. LWT-Food Sci. Technol., 44(4), 854-85.
[33] Ndlala, F. N., Onipe, O. O., Mokhele, T. M., Anyasi, T. A. & Jideani, A. L. (2019). Effect of wheat bran incorporation on the physical and sensory properties of a South African cereal fried dough. Food., 8(11), 559.
[34] Luo, D., Wu, R., Zhang, J., Zhang, K., Xu, B., Li, P., Yuan, Y. & Li, X. (2018). Effects of ultrasound assisted dough fermentation on the quality of steamed bread. J. of Cereal Sci., 83, 147-152.
[35] Santos, F. G. & Capriles, V. D. (2021). Relationship between dough thermomechanical parameters and physical and sensory properties gluten-free bread texture during storage. LWT, 139, 110577.
[36] Cai, L., Choi, I., Lee, Ch., Park, K. & Baik, B. (2014). Bran Characteristics and Bread-baking quality of whole grain wheat flour. J. Cereal Chem., 91(4), 398-405.
[37]Gomez, M., Ronda, F., Caballero, P.A., Blanco, C. A. & Rosell, C. M. (2007). Funcionality of different hydrocolloids on the quality and shelf life of yellow layer cakes.J. Food Htdrocolloids., 21(2), 167-173.
[38] Ziobro, R., Korus, J., Juszczak, L. & Witczak, T. (2013). Influence of inulin on physical characteristics and staling rate of gluten-free bread. J. Food Eng., 116(1), 21-27.
[39] Martinez, M. M., Diaz, A. & Gomez, M. (2014). Effect of different microstrural featuers of soluble and insoluble fibres on gluten-free dough rheology and bread-making. J. Food Eng., 142, 49-56.
[40] Hu, A., Li, L., Zeng, J., Lu, J.,Meng, X., Liu, Y. & Rizwan Ur, R. (2014). Different frequency ultrasonic effects on properties and structure of corn starch. J. Sci. Food Agric. 94(14), 2929-2934.
[41] Curti, E., Carini, E., Tribuzio, G. & Vittadini, E. (2014). Bread staling: Effect of gluten on physico-chemical properties and molecular mobility. LWT-Food Sci. Technol., 59(1): 418-425.
[42] Kumala, T., Sutrisno, A. & Yunianta, Y. (2020). Glucomannan as an anti-staling agent to improve the texture value whole wheat bread. IOP Conf. Series: Earth & Environmental Science, 475(1): 012030.
[43] Alpers, Th., Kerpes, R., Frioli, M., Nobis, A., Hoi, K., Bach, A., Jekle, M. & Becker, Th. (2021). Impact of storing Condition on staling and microbial spoiling behavior of Bread and their contribution to prevent food waste. J. Foods., 10(1), 76.
[44] Manano, J., Ogwok, P., Byarugaba-Baziraka, G. W. & Mugampoza, E. (2021). Rheological, baking and sensory characteristics of Bread from Wheat-Cassava composite dough. J. Food Res., 10(5), 1-18.
[45] Eriksson, E., Koch, K., Tortoe, Ch., Akonor, P. T. & Oduro-Yeboah, C. (2014). Evaluation of the physical and sensory characteristics of Bread produced from three varieties of cassava and wheat composite flours. J. Food publ., 4(5), 214-222.
[46] Landahl, S. & Terry, L. A. (2020). Non-destructive discrimination of avocado fruit ripeness using laser Doppler vibrometry. J. of Biosystems Eng., 194(5), 251-260.
[47] Zhang, Sh., Wang, W., Wang, Y., Fu, H. & Yang, Zh. (2021). Improved prediction of litchi impact characteristics with an energy dissipation model. J. Postharvest Biol. Technol., 176(2), 111508.
[48] Marinopoulou, A. Petridis, D. & Raphaelides, S.N. (2019). Assessment of texture changes in sliced pan bread on aging using sensory and instrumental method. J. Food Processing and Preservation., 43(2), e13982.
[49] Lapcik, L., Vasina, M., Lapcikiova, B. & Valenta, T. (2016). Study of bread staling by means of vibro-acoustic, tensile and thermal analysis techniques. J. Food Eng., 178, 31-38.
[50] Bollain, C., Angioloni, A. & Collar, C. (2005). Bread staling assessment of enzyme-supplemented pan breads by dynamic and static deformation measurements. J. European Food Res. Technol., 220(1), 83-89.
[51] Cui, D., Gao, Z., Zhang, W. & Ying, Y. (2015). The use of a laser Doppler vibrometer to assess watermelon firmness. J. Computer & Electronics in Agri.. 112, 116-120.
[52] Nematinia, E. & Abdanan Mehdizdeh, S. (2018). Assessment of egg freshness by prediction Haugh unit and albumen pH using an artificial neural network. J. Food Measurement & Characterization., 12(3), 1449-1459.
[53] Argyri. A. A., Jarvis, R. M., Wedge, D. C., Xu, Y., Panagou, E., Goodacre, R. & Nychas, G. J. E. (2013). A comparison of Raman and FT-IR spectroscopy for the prediction of meat spoilage. J. Food Control., 29(2), 461-470.
[54] Qu, Ch., Wang, Z., Jin, X., Wang, X. & Wang, D. (2020). A moisture content prediction model for deep bed peanut drying using support vector regression. J. Food Process Eng., 43(11), e13510.
[55] Rozylo, R. & Laskowski, J. (2011). Predicting bread quality (bread loaf volume and crumb texture). Polish J. Food & Nutrition Sci., 61(1), 61-67.
[56] Hatamian, M., Noshad, M., Abdanan Mehdizadeh, S. & Barzegar, H. (2020). Intelligent Modeling of Bread texture Acoustic measurement method and artificial neural network (case study: Enriched bread with Chia). J. Innovative Food Technol., 7(4), 517-534.