توسعه یک روش غیر مخرب به منظور تعیین ویژگی‌های بافتی نان باگت با استفاده از سنسور ارتعاش‌سنج لیزر داپلر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار دانشگاه علوم کشاورزی و منایع طبیعی خوزستان

2 دانشجوی کارشناسی ارشد، گروه مهندسی ماشین‌های کشاورزی و مکانیزاسیون، دانشکده مهندسی زراعی و عمران روستایی، دانشگاه علوم کشاورزی

چکیده

یافتن راهی غیرمخرب برای ارزیابی سریع تغییرات بافت نان طی مدت نگهداری کمک شایانی به پژوهشگران برای بررسی تاثیر افزودنی‌های مختلف بر ویژگی‌های کیفی و ماندگاری نان می‌کند. در این راستا، در این پژوهش تغییرات پارامترهای ارتعاش آزاد شامل فرکانس طبیعی، نسب میرایی، تعداد عبور از نقطه صفر، میانگین، انحراف معیار، اوج، انرژی شدت ارتعاش، آنتروپی در مقایسه با ویژگی‌های بافتی و حسی نمونه‏های نان در روزهای صفر، دوم و چهارم نگهداری مورد بررسی قرار گرفتند. نهایتا با ویژگی‌ها بدست آمده مدل پیشگویی برای تعیین ویژگی‌های بافتی نان (سفتی، قابلیت جویدن، پیوستگی و ارتجاعیت) به کمک رگرسیون ماشین بردار پشتیبان با 3 کرنل خطی، درجه دو و کرنل تابع پایه شعاعی توسعه یافت. نتایج ارزیابی ضریب همبستگی نشان دهنده وجود ارتباط قوی بین پارامترهای ارتعاشی و متغییرهای بافتی بود. بعلاوه در حالت کلی با توجه به خطای سه کرنل و همچنین ضریب همبستگی بدست آمده کرنل خطی در پیش‌بینی ویژگی‌های بافتی عملکرد بهتری نسب به دو کرنل دیگر داشت. لذا روش توسعه یافته با توجه به دقت بالا امکان جایگزینی روش مخرب آزمون بافت را دارد.

چکیده تصویری

توسعه یک روش غیر مخرب به منظور تعیین ویژگی‌های بافتی نان باگت با استفاده از سنسور ارتعاش‌سنج لیزر داپلر

تازه های تحقیق

  • در این پژوهش یک روش غیر مخرب به منظور تعیین ویژگی­های بافتی نان باگت با استفاده از سنسور ارتعاش­سنج لیزر داپلر توسعه یافت.
  • 9 ویژگی ارتعاشی (فرکانس طبیعی، نسب میرایی، تعداد عبور از نقطه صفر، میانگین، انحراف معیار، اوج، انرژی شدت ارتعاش و آنتروپی) استخراج شدند.
  • نتایج ارزیابی ضریب همبستگی نشان دهنده وجود ارتباط قوی بین پارامترهای ارتعاشی و متغییرهای بافتی بود.
  • مدل پیشگویی برای تعیین ویژگی­های بافتی نان به کمک رگرسیون ماشین بردار پشتیبان توسعه یافت.
  • خطای پیش­بینی ویژگی­های بافتی نان بوسیله کرنل خطی نسبت به دو کرنل دیگر (درجه دو و کرنل تابع پایه شعاعی) کمتر بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Development of a non-destructive method to determine the textural characteristics of baguette bread using a Doppler laser vibrometer sensor

نویسندگان [English]

  • Saman Abdanan Mehdizadeh 1
  • Fatemeh Nouri 2
1 Associate professor of Agricultural Sciences and Natural Resources University of Khuzestan
2 2. MSc Student Department of Mechanics of Biosystems Engineering, Faculty of Agricultural Engineering and Rural Development, Agricultural Sciences and Natural Resources University of Khuzestan
چکیده [English]

Finding a nondestructive method, for rapid evaluation of bread crumb changes during storage, helps researchers to assess the effect of different additives on quality properties and shelf life of bread. Therefore, in this study the changes of bread free vibrational parameters including natural frequency, damping ration, zero-crossing rate, average, standard deviation, peak, energy and entropy were evaluated in comparison with bread textural and sensorial properties on 0, 2 and 4 storage days. Finally, a predictive model was developed to determine the textural characteristics of bread (firmness, chewiness, cohesiveness and springiness) using support vector regression with three kernels linear, quadratic and radial basis function. Results of correlation coefficient of evaluation showed strong relationship between vibrational parameters with textural variables. In addition, in general, considering the error of three kernels as well as the correlation coefficient, the linear kernel performed better than the other two kernels in predicting textural properties. Therefore, the results of this study demonstrated the suitability of vibrational properties for determination of textural Characteristics of bread crumb during storage.

کلیدواژه‌ها [English]

  • bread staling
  • textural characteristics
  • vibrational parameters
  • correlation analysis
[1] Abdanan Mehdizadeh, S. (2022). Machine vision based intelligent oven for baking inspection of Cupcake: Design and implementation. J. Mechatronics., 82(2), 102746.
[2] Liu, D., Zeng, X.A. & Sun, D.W. (2015). Recent development and application of hyperspectral imaging for quality evaluation of agricultural products: A review. Crit Rev Food Sci Nut., 55(12), 1744-1757.
[3] Alander, J., Bochko, V., Martinkauppi, B., Saranwong, S. & Mantere, T. (2013). A Review of Optical Nondestructive Visual and Near-Infrared Methods for Food Quality and Safey. International J. Spectroscopy., 2013(3), 341402.
[4] Qamruzzaman, M., Ahmed, F. & Mondal, Md. (2022). An overview on starch-based sustainable hydrogels: Potential application and aspects. J. Polymers & Environment, 29(6), 1-32.
[5] Bosmans, G. M., Lagrain, B., Ooms, N., Fierens, E., & Delcour, J. A. (2013). Biopolymer interactions, water dynamics, and bread crumb firming. J. Agric. Food Chem., 61(19), 4646-4654.
[6] Ribotta, P.D. & Le-Bail, A. (2007). Thermophysical assessment of Bred during staling. Lebensmittel-Wissenschaft und-Technologie., 40(5), 879-884.
[7] Curti, E., Carini, E., Tribuzio, G. & Vittadini, E. (2014). Bread staling: effect of gluten on physico-chemical properties and molecular mobility. LWT-Food Sci. Technol., 59(1), 418-425.
[8] Liu, Z. & Scanlon. (2003). Predicting Mechanical Properties of Bread Crumb. J. Food and Bioproducts Processing., 81(3), 224-238.
[9] Tournier, C., Grass, M., Zope, D., Salles, C. & Bertrand, D. (2012). Characterization of bread breakdown during mastication by image texture analysis. J. Food Eng., 113(4), 615-622.
[10] AACC (American Association of Cereal Chemists). 1995. Method 74-09. Bread Firmness by Universal Testing Machine. Approved Methods (Vol. II). MNUSA: St Paul.
[11] Le-Bail, A., Boumali, K., Jury, V., Ben-Aissa, M.F. & Zuniga, R. (2009). Impact of the kinetic of baking on staling rate and on the mechanical properties of crumb and degassed crumb. J. cereal science., 50(2), 235-240.
[12] Nouri, M., Nasehi, B., Goudarzi, M. & Abdanan Mehdizadeh., S. (2018). Non-destructive Evaluation of bread Staling Using Gray Level Co-occurrence Matrices. Food Analytical Meth., 11(2).
[13] Leiva-Valenzuela, G., Quilaqueo, M., Mariotti-Celis, M.S., Letelier, K., Estay, D. & Pedreschi, F. (2019). Predicting furan content in a fried dough system using image analysis. J. Food Chem., 298(2), 125096.
[14] Polak, A., Coutts, F.K., Murray, P. & Marshal, S. (2019). Use of hyperspectral imaging for cake moisture and hardness prediction. Image Processing, IET., 13(7), 1142-1160.
[15] Rusinek, R., Gancaraz, M. & Agieszka, N. (2020). Application of an electronic with novel method for generation of smellprints for testing the suitability for consumption of wheat bread during 4-day storage. J. Food Sci. Technol., 117, 108665.
[16] Xie, F., Dowell, F. & Sun, X. (2003). Compuarison of Near-Infrared Reflectance Spectroscopy and Texture Analyzer for Measuring Wheat Bread Changes in Storage. J. Cereal Chem., 80(1), 25-29.
[17] Chen, J., Karlsson, C., & Povey, M. (2005). Acoustic envelope detector for crispness assessment of biscuits. J. Texture Studies., 36(2), 139-156.
[18] Jakubczyk, E., Gondek, E. & Tryzno, E. (2017). Application of novel acoustic measurement techniques for texture analysis of co-extruded snacks. Lebensmittel-Wissenschaft und-Technol., 75(4), 582-589.
[19] Carsanba, E., Duerrschmid, K., & Schleining, G. (2018). Assessment of acoustic-mechanical measurements for crispness of wafer products. J. Food Eng., 229, 93-101.
[20] Taniwaki, M., Sakurai, N. & Takahashi, M. (2009). Determination of optimum ripeness for edibility of postharvest melons using nondestructive vibration. Food Research Internationnal., 42(1), 137-141.
[21] Teraski, Sh., Sakurai, N., Zebrowski, J., Murayama, H., Yamamoto, R. & Nevins, D. (2006). Laser Doppler vibrometer analysis of changes in elastic properties of ripening 'La France' pears after postharvest storage. Postharvest Biol. Technol., 42(2), 198-207.
[22] Purhagen, J., Sjoo, M. & Eliasson, A. (2011). Starch affecting anti-staling agents and their function in freestanding and pan-baked bread. Food Hydrocolloids., 25(7), 1656-1666.
[23] AACC (American Association of Cereal Chemists). 2000. Method 44-19, Moisture, Approved Methods. MN, USA: St Paul.
[24] Curti, E., Carini, E., Tribuzio, G. & Vittadini, E. (2014). Bread staling: Effect of gluten on physico-chemical properties and molecular mobility. LWT-Food Sci. Technol., 59(1): 418-425.
[25] Guine, R.P.F. (2020). Evalution of texture of cheese by-products incorporated bread. Braz. J. Food Technol., 23(Pt1), e2019319.
[26] Baixauli, R., Salvador, A., & Fiszman, S. (2008). Textural and colour changes during storage and sensory shelf life of muffins containing resistant starch. European Food Research Technol., 226(3), 523-530.
[27] Janati, S., Abdanan Mehdizadeh, S. & Heydari, M. (2022). Designing, Manufacturing, and evaluating the diagnostic system of carob moth in pomegranate fruit using digital signal processing. J. Computer and Electronics Agric., 192, 106564.
[28] Amraei, S., Abdanan Mehdizadeh, S. & Sallary, S. (2017). Application of computer vision and support vector regression for weight prediction of live broiler chicken. Engineering in agriculture, environment & food., 10(4), 266-271.
[29] Dai, Y., Wang, H., Wang, J., Wang, X., Wang, Zh. & Ge, X. (2022). Prediction of water uality based on SVR by fluorescence Excitation-Emission matrix and UV-Vis absorption. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy., 273(15), 121059.
[30] Al-Mahasneh, M., Aljarrah, M., Rababah, T. & Aludatt, M. (2018). Using MR-STIR and Texture Profile to Track the Effect of Storage Time and Temperature on Pita Bread Staling. Journal of Food uaility., 2018(1), 1-9.
[31] Izadi Najafabadi, L., Le-Bail, A., Hamdami, N., Monteau, J., & Keramat, J. (2014). Impact of baking conditions and storage temperature on staling of fully and part-baked Sangak bread. Journal of Cereal Science., 60(1), 151-156.
[32] Curti, E., Bubici, S., Carini, E., Baroni, S., & Vittadini, E. (2011). Water molecular dynamics during bread staling by nuclear magnetic resonance. LWT-Food Sci. Technol., 44(4), 854-85.
[33] Ndlala, F. N., Onipe, O. O., Mokhele, T. M., Anyasi, T. A. & Jideani, A. L. (2019). Effect of wheat bran incorporation on the physical and sensory properties of a South African cereal fried dough. Food., 8(11), 559.
[34] Luo, D., Wu, R., Zhang, J., Zhang, K., Xu, B., Li, P., Yuan, Y. & Li, X. (2018). Effects of ultrasound assisted dough fermentation on the quality of steamed bread. J. of Cereal Sci., 83, 147-152.
[35] Santos, F. G. & Capriles, V. D. (2021). Relationship between dough thermomechanical parameters and physical and sensory properties gluten-free bread texture during storage. LWT, 139, 110577.
[36] Cai, L., Choi, I., Lee, Ch., Park, K. & Baik, B. (2014). Bran Characteristics and Bread-baking quality of whole grain wheat flour. J. Cereal Chem., 91(4), 398-405.
[37]Gomez, M., Ronda, F., Caballero, P.A., Blanco, C. A. & Rosell, C. M. (2007). Funcionality of different hydrocolloids on the quality and shelf life of yellow layer cakes.J. Food Htdrocolloids., 21(2), 167-173.
[38] Ziobro, R., Korus, J., Juszczak, L. & Witczak, T. (2013). Influence of inulin on physical characteristics and staling rate of gluten-free bread. J. Food Eng., 116(1), 21-27.
[39] Martinez, M. M., Diaz, A. & Gomez, M. (2014). Effect of different microstrural featuers of soluble and insoluble fibres on gluten-free dough rheology and bread-making.  J. Food Eng., 142, 49-56.
[40] Hu, A., Li, L., Zeng, J., Lu, J.,Meng, X., Liu, Y. & Rizwan Ur, R. (2014). Different frequency ultrasonic effects on properties and structure of corn starch. J. Sci. Food Agric. 94(14),  2929-2934.
[41] Curti, E., Carini, E., Tribuzio, G. & Vittadini, E. (2014). Bread staling: Effect of gluten on physico-chemical properties and molecular mobility. LWT-Food Sci. Technol., 59(1): 418-425.
[42] Kumala, T., Sutrisno, A. & Yunianta, Y. (2020). Glucomannan as an anti-staling agent to improve the texture value whole wheat bread. IOP Conf. Series: Earth & Environmental Science, 475(1): 012030.
[43] Alpers, Th., Kerpes, R., Frioli, M., Nobis, A., Hoi, K., Bach, A., Jekle, M. & Becker, Th. (2021). Impact of storing Condition on staling and microbial spoiling behavior of Bread and their contribution to prevent food waste. J. Foods., 10(1), 76.
[44] Manano, J., Ogwok, P., Byarugaba-Baziraka, G. W. & Mugampoza, E. (2021). Rheological, baking and sensory characteristics of Bread from Wheat-Cassava composite dough. J. Food Res., 10(5), 1-18.
[45] Eriksson, E., Koch, K., Tortoe, Ch., Akonor, P. T. & Oduro-Yeboah, C. (2014). Evaluation of the physical and sensory characteristics of Bread produced from three varieties of cassava and wheat composite flours. J. Food publ., 4(5), 214-222.
[46] Landahl, S. & Terry, L. A. (2020). Non-destructive discrimination of avocado fruit ripeness using laser Doppler vibrometry. J. of Biosystems Eng., 194(5), 251-260.
[47] Zhang, Sh., Wang, W., Wang, Y., Fu, H. & Yang, Zh. (2021). Improved prediction of litchi impact characteristics with an energy dissipation model. J. Postharvest Biol. Technol., 176(2), 111508.
[48] Marinopoulou, A. Petridis, D. & Raphaelides, S.N. (2019). Assessment of texture changes in sliced pan bread on aging using sensory and instrumental method. J. Food Processing and Preservation., 43(2), e13982.
[49] Lapcik, L., Vasina, M., Lapcikiova, B. & Valenta, T. (2016). Study of bread staling by means of vibro-acoustic, tensile and thermal analysis techniques. J.  Food Eng., 178, 31-38.
[50] Bollain, C., Angioloni, A. & Collar, C. (2005). Bread staling assessment of enzyme-supplemented pan breads by dynamic and static deformation measurements. J. European Food Res. Technol., 220(1), 83-89.
[51] Cui, D., Gao, Z., Zhang, W. & Ying, Y. (2015). The use of a laser Doppler vibrometer to assess watermelon firmness. J. Computer & Electronics in Agri.. 112, 116-120.
[52] Nematinia, E. & Abdanan Mehdizdeh, S. (2018). Assessment of egg freshness by prediction Haugh unit and albumen pH using an artificial neural network. J. Food Measurement & Characterization., 12(3), 1449-1459.  
[53] Argyri. A. A., Jarvis, R. M., Wedge, D. C., Xu, Y., Panagou, E., Goodacre, R. & Nychas, G. J. E. (2013). A comparison of Raman and FT-IR spectroscopy for the prediction of meat spoilage. J. Food Control., 29(2), 461-470.
[54] Qu, Ch., Wang, Z., Jin, X., Wang, X. & Wang, D. (2020). A moisture content prediction model for deep bed peanut drying using support vector regression. J. Food Process Eng., 43(11), e13510.
[55] Rozylo, R. & Laskowski, J. (2011). Predicting bread quality (bread loaf volume and crumb texture). Polish J. Food & Nutrition Sci., 61(1), 61-67.  
[56] Hatamian, M., Noshad, M., Abdanan Mehdizadeh, S. & Barzegar, H. (2020). Intelligent Modeling of Bread texture Acoustic measurement method and artificial neural network (case study: Enriched bread with Chia). J. Innovative Food Technol., 7(4), 517-534.