[1] Spychaj, T., Zdanowicz, M., Kujawa, J., & Schmidt, B. (2012). Carboxymethyl starch with high degree of substitution: synthesis, properties and application. In: Proceeding of the 8th Cong. Chem. Tech. 102-105, Krakow, Poland..
[2] Heinze, T. H. (2005). Carboxymethyl ethers of cellulose and starch – A review; Center of Excellence for Polysaccharide Research; Friedrich Schiller University.
[3] Zhang, B. Wei, B., Hu, X., Jin, Z., Xu, X., & Tian, Y. (2015). Preparation and characterization of carboxymethyl starch microgel with different crosslinking densities. Carbohydr. Polym., 124, 245–253.
[4] Singh, J., & Kaur, O. J. (2007). Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—A review. 2007. Food Hydrocoll., 21, 1, 1–22.
[5] Bi, Y., & Liu, M. (2008). Synthesis of carboxymethyl potato starch and comparison of optimal reaction conditions from different sources. Polym. Adv. Technol., 19,1185–1192.
[6] Kaur, L., & Singh, J. (2016). Starch: Modified Starches. In: B. Caballero & P. Finglas (Eds.). Encyclopedia of Food and Health (1nd ed., pp. 152-159). New Zealand: E-Publishing Inc.
[7] xing Luo, Fa., & Huang, Q. (2009). Preparation and characterisation of crosslinked waxy potato starch. Food Chem., 115, 563–568.
[8] Neelam, K. (2012). Variouse tachniques for the modification of starch and the applications of its derivatives. Int. J. Pharm, 3, 25-31.
[9] Rejane, C., Douglas, G., Britto, D., Odilio, B., & Assis, G. (2009). The antimicrobial activity of chitosan: A Review. Polym., 19, 241-247.
[10] Andres, Y., Giraud, L., Gerente, C., & Cloirec, L. (2007). Antibacterial Effects of Chitosan Powder: Mechanisms of Action. Environ. Technol., 28, 1357-1363.
[11] Tsai, G., Su, J., Chen, W.H., & Pan, C. L. (2002). Antimicrobial activity of shrimp chitin and chitosan from different treatments and applications of fish preservation. Fisheries Sci., 68,170-177.
[12] Ghaouth, L., Arul, A., Grenier, J., & Asselin, A. (1992). Antifungal Activity of Chitosan on Two Postharvest Pathogens of Strawberry Fruits. Phytopathology., 82, 398-402.
[13] Cuero, R. G. (1999). Antimicrobial action of exogenous chitosan. EXS, 87, 315-333.
[14] Ujimoto, T., Tsuchiya, Y., Nakamura, M., Nakamura, K., & Yamamoto, M. (2006). Antibacterial effects of chitosan solution against Legionella pneumophila, Escherichia coli, and Staphylococcus aureus. Int. J. Food Microbiol, 112, 96-101.
[15] Khodaman, E., Barzegar, H., Jokar, A. (2022). Production and evaluation of Physicochemical, Mechanical and Antimicrobial Properties of Chia (
Salvia hispanica L.) mucilage-gelatin based Edible Films Incorporated with Chitosan Nanoparticles.
J. Food Measure.
Charact.,
16 (3).
https://doi.org/10.1007/s11694-022-01470-7.
[16] Singh, A., Mittal, A., Benjakul, S. (2021). Chitosan nanoparticles: preparation, food applications and health benefits. Sci. Asia. 47, 1-10. doi:10.2306 /scienceasia1513-1874.2021.020.
[17] Kapoor, M., Khandal, D., Seshadri, G., Aggarwal, S., & Kumar, R. (2013). Novel Hydrocolloids, Preparation & Applications: A Review. LIJRRAS.,16, 3-14.
[18] Kulicke, E. D., Kuhn, W.M., & Stute, K. R. (1995). Formation of maize starch gels selectively regulated by the addition of hydrocolloids. Starch., 47, 378-384.
[19] Peter, A., Steeneken, M., Albert, J., Woortman, J., & Oudhuis, A. M. (2011). processing stability of cross-linked starches in acid sauce applications and identification of some of the molecular factors involved. Food Hydrocoll., 25, 410-418.
[20] Hala, M., Amin, H,. Elbeltagy, A.E., Mustafa, M., & Khalili, A.H. (2014). Development of low fat mayonnaise containing different types and levels of hydrocolloid gum. J. Agroaliment. Processes Technol., 20, 54-63.
[21] Jaworski, Z., Spychaj, T., Story, A., & Story, G. (2021). Carbomer microjels as model yield-stress fluids. Rev. Chem. Eng., 11, 1-39.
[22] Wilpiszewska, K., & Spychaj, T. (2007). Chemical modification of starch with hexamethylene di-isocyanate derivatives. Carbohydr. Polym., 70 (3), 334-340.
[23] King, A. H. (2010). Hydrocolloids in salad dressings. In: T.R, Laaman (Eds). Hydrocoll. Food Process., (1nd ed., pp. 19-33). New Jersey: Wiley-Blackwell.
[24] Li, H.P., Zhang, S.S., Jiang, H., & Li, X. (2011). Effect of degree of substitution of carboxymethyl starch on diaspore depression in reverse flotation. Trans. Nonferrous Met. Soc. China, 21, 1868-1873.
[25] Lee, I., Lee, S., & Lee, N. (2013). Reduced-Fat Mayonnaise Formulated with Gelatinized Rice Starchand Xanthan Gum. Cereal Chem., 90 ,29–34.
[26] Liu, H., Xu, X.M., & Guo, S.D. (2007). Rheological, texture and sensory properties of low-fat mayonnaise with different fat mimetics. LWT. Food Sci. Technol, 40, 946-954.
[27] Mun, S., Kim, Y. L., Kang, C. G., Park, K. H., Shim, J. Y. & Kim, Y. R. (2009). Development of Reduced Fat Mayonnaise Using 4αGTase-Modified Rice Starch and Xanthan Gum. Int. J. Biol. Macromol, 44 (5), 400-407.
[28] Li, S., Mary Vianney, M.J., & Liu, M. (2011). Synthesis of Carboxymethyl Starch with High Degree of Substitution by a Modified Dry Process. Adv. Mat. Res, 233, 306-310.
[29] Tian, Y., Zhang, X., Sun, B., & Jin, Z. (2015). Starch sodium dodecenyl succinate prepared by one-step extrusion and its properties. Carbohydr. Polym, 133, 90-93.
[30] Fathi, M., Varshosaz, J., & Shahidi, F. (2013). Hesperetin-loaded solid lipid nanoparticles and nanostructure lipid carriers for food fortification: preparation, characterization, and modeling. Food Bioproc.Tech., 6, 1464-1475.
[31] Mancini, F., Montanari, L., Peressini, D., & Fantozzi, P. (2002). Influence of alginate concentration and molecular weight on functional properties of mayonnaise. LWT. Food Sci. Technol, 35, 517-525.
[32] Dolz, M., Hernandez, M.L., & Delegido, J. (2006). Oscillatory measurements for salad dressings stabilized with modified starch, xanthan gum and locust bean gum. J. Appl.polym. Sci., 102, 897-903.
[33] Peressini, D., & De Cindio, B. (1998). Rheological characterization of traditional and light mayonnaises. J. food Eng. 35, 409-417.
[34] Batista, A.P., & Empis, J. (2006). Rheological characterization of coloured oil-in water food emulsions with lutein and phycocyanine added to the oil and aqueous phases. Food Hydrocoll., 20, 44-52.
[35] Ma, L., & Barbosa-Cánovas, G.V. (1995). Rheological characterization of mayonnaise. Part II: Flow and viscoelastic properties at different oil and xanthan gum concentrations. J. Food Eng., 25, 409-425
[36] Štern, P., Valentová, H., & Pokorny`, J. (2001). Rheological properties and sensory texture of mayonnaise. Eur. J. Lipid. Sci. Technol., 103, 23-28.
[37] Jadhav, H.B., Gogate, P., & Annapure, U. (2022). Studies on Chemical and Physical Stability of Mayonnaise Prepared from Enzymatically Interesterified Corn Oil-Based Designer Lipids
. ACS Food Sci. Technol., 2, 359–367
.