1] Akbarpour, V., Milani, J., & Hemmati, K. (2009). Mechanical properties of pomegranate seeds affected by moisture content. American-Eurasian Journal of Agricultural and Environmental Science, 6(4), 447-453.
[2] Holland, D., Hatib, K., & Bar-Ya'akov, I. (2009). 2 Pomegranate: Botany, horticulture, breeding. Horticultural reviews, 35(2), 127-191.
[3] Olmo-Vega, A., García-Sánchez, F., Simón-Grao, S., Simón, I., Lidón, V., Nieves, M., & Martínez-Nicolás, J. J. (2017). Physiological responses of three pomegranate cultivars under flooded conditions. Scientia Horticulturae, 224, 171-179.
[4] Talaei, A., Askari, M., Bahadoran, F., & Sherafatyan, D. (2004). Study the effect of hot water and polyethylene bags on postharvest life and fruit quality of pomegranate cv. Malas-e-Saveh. J Agri Sci, 35, 369-77.
[5] Ahmadi, K., Ebadzadeh, H.R., Hatami, F., Abdeshah, H. & A. Kazemian. 2019. Agricultural Statistics 1399 (Volume 3: Horticultural Products), Information and Communication Technology Center, Ministry of Jihad Agriculture (MAJ), 157p. [In Persian]
[6] Zarei, M., Azizi, M. (2011). Evaluation of Some Physicochemical Characteristics of Six Iranian Pomegranate (Punica granatum L.) Cultivars Fruit at Ripening Stage. Journal of Horticultural Science, 24(2),-. doi: 10.22067/jhorts4.v1389i2.7995. [In Persian]
[7] Prakash, C. V. S., & Prakash, I. (2011). Bioactive chemical constituents from pomegranate (Punica granatum) juice, seed and peel-a review. Int J Res Chem Environ, 1(1), 1-18.
[8] Johanningsmeier, S. D., & Harris, G. K. (2011). Pomegranate as a functional food and nutraceutical source. Annual review of food science and technology, 2, 181-201.
[9] Heber, D., Schulman, R. N., & Seeram, N. P. (Eds.). (2006). Pomegranates: ancient roots to modern medicine. CRC press.
[10] Shishebor, F., Mohammadshahi, M., Zakerkish, M., Saki, A., Shirani, F., Zarei, M., & Zare, M. (2015). Effect of Concentrated Pomegranate Juice on Cardiovascular Factors in Patients with Type 2 Diabetes. Journal of Isfahan Medical School, 32(309), 1944-1953. [In Persian]
[11] El Darra, N., Rajha, H. N., Saleh, F., Al-Oweini, R., Maroun, R. G., & Louka, N. (2017). Food fraud detection in commercial pomegranate molasses syrups by UV–VIS spectroscopy, ATR-FTIR spectroscopy and HPLC methods. Food Control, 78, 132-137.
[12] Boggia, R., Casolino, M. C., Hysenaj, V., Oliveri, P., & Zunin, P. (2013). A screening method based on UV–Visible spectroscopy and multivariate analysis to assess addition of filler juices and water to pomegranate juices. Food chemistry, 140(4), 735-741.
[13] Vardin, H., Tay, A., Ozen, B., & Mauer, L. (2008). Authentication of pomegranate juice concentrate using FTIR spectroscopy and chemometrics. Food Chemistry, 108(2), 742-748.
[14] Ehling, S., & Cole, S. (2011). Analysis of organic acids in fruit juices by liquid chromatography− mass spectrometry: an enhanced tool for authenticity testing. Journal of agricultural and food chemistry, 59(6), 2229-2234.
[15] Naderi-Boldaji, M., Mokhtari, M., Ghasemi-Varnamkhasti, M., & Tohidi, M. (2019). Feasibility of using a cylindrical resonator sensor for adulteration detection in sesame oil. Innovative Food Technologies, 6(3), 409-420. [In Persian].
[16] Ghasemi-Varnamkhasti, M., Mishra, P., Ahmadpour-Samani, M., Naderi-Boldaji, M., Ghanbarian, D., Tohidi, M., & Izadi, Z. (2019). Rapid detection of grape syrup adulteration with an array of metal oxide sensors and chemometrics. Engineering in Agriculture, Environment and Food, 12(3), 351-359. [In Persian]
[17] Gliszczyńska-Świgło, A., & Chmielewski, J. (2017). Electronic nose as a tool for monitoring the authenticity of food. A review. Food Analytical Methods, 10(6), 1800-1816.
[18] Heidarbeigi, K., Mohtasebi, S. S., Foroughirad, A., Ghasemi-Varnamkhasti, M., Rafiee, S., & Rezaei, K. (2015). Detection of adulteration in saffron samples using electronic nose. International Journal of Food Properties, 18(7), 1391-1401.
[19] Kiani, S., Minaei, S., & Ghasemi-Varnamkhasti, M. (2016). A portable electronic nose as an expert system for aroma-based classification of saffron. Chemometrics and Intelligent Laboratory Systems, 156, 148-156.
[20] Haddi, Z., Alami, H., El Bari, N., Tounsi, M., Barhoumi, H., Maaref, A. & Bouchikhi, B. E. N. A. C. H. I. R. (2013). Electronic nose and tongue combination for improved classification of Moroccan virgin olive oil profiles. Food Research International, 54(2), 1488-1498.
[21] Ordukaya, E., & Karlik, B. (2017). Quality control of olive oils using machine learning and electronic nose. Journal of Food Quality, 2017.
[22] Hosseini, H., Minaei, S., Beheshti, B. (2022). Evaluation of pattern recognition for detecting adulteration in sesame oil using machine olfaction system based on multivariate analysis. Agricultural Mechanization and Systems Research, (), -. doi: 10.22092/amsr.2022.356371.1400. [In Persian]
[23] Shabani, P., Izadi, Z., Ghasemi-Varnamkhasti, M., Tohidi, M., Reezi, S. (2018). Olfactory machine system an effective solution for detection of adulteration in rosewater. Innovative Food Technologies, 6(1), 75-89. doi: 10.22104/jift.2018.2940.1712. [In Persian]
[24] Chen, Q., Zhao, J., Chen, Z., Lin, H., & Zhao, D. A. (2011). Discrimination of green tea quality using the electronic nose technique and the human panel test, comparison of linear and nonlinear classification tools. Sensors and Actuators B: Chemical, 159(1), 294-300.
[25] Zou, H. Q., Li, S., Huang, Y. H., Liu, Y., Bauer, R., Peng, L. & Yan, Y. H. (2014). Rapid identification of Asteraceae plants with improved RBF-ANN classification models based on MOS sensor E-nose. Evidence-Based Complementary and Alternative Medicine, 2014.
[26] Mohammad-Razdari, A., Ghasemi-Varnamkhasti, M., Yoosefian, S., Siadat, M., Izadi, Z., Rostami, S. (2018). Detection of pumpkin puree adulteration in tomato paste using a gas sensor array. Innovative Food Technologies, 6(1), 137-148. doi: 10.22104/jift.2018.2982.1726. [In Persian]
[27] Sanaeifar, A., Mohtasebi, S., Ghasemi-Varnamkhasti, M., Ahmadi, H. (2015). Design, Construction and Performance Evaluation of a Metal Oxide Semiconductor (MOS) Based Machine Olfaction (Electronic Nose) for Monitoring of Banana Ripeness. Journal of Agricultural Machinery, 5(1), 111-121. doi: 10.22067/jam.v5i1.27159. [In Persian]
[28] Solimany, M.H., Rabban, H. & Mirzaee- Ghaleh, E. (2020). Detection in pure grenadine using gas sensing array. In: Proceeding of the 12th Int. Cong. of
biosystems engineering and mechanization (pp.–), Ahwaz, IRAN. COI Code: NCAMEM12_158 [In Persian]
[29] Zhang, Y., Krueger, D., Durst, R., Lee, R., Wang, D., Seeram, N., & Heber, D. (2009). International multidimensional authenticity specification (IMAS) algorithm for detection of commercial pomegranate juice adulteration. Journal of Agricultural and Food Chemistry, 57(6), 2550-2557.
[30] Kamal, Y. T., Alam, P., Alqasoumi, S. I., Foudah, A. I., Alqarni, M. H., & Yusufoglu, H. S. (2018). Investigation of antioxidant compounds in commercial pomegranate molasses products using matrix-solid phase dispersion extraction coupled with HPLC. Saudi Pharmaceutical Journal, 26(6), 839-844.
[31]
Arshak, K.,
Moore, E.,
Lyons, G.M.,
Harris, J. and
Clifford, S. (2004), "A review of gas sensors employed in electronic nose applications",
Sensor Review, 24(2), 181-198.
https://doi.org/10.1108/02602280410525977
[32] Pearce, T. C., Schiffman, S. S., Nagle, H. T., & Gardner, J. W. (Eds.). (2006). Handbook of machine olfaction: electronic nose technology. John Wiley & Sons.
[33] Men, H., Chen, D., Zhang, X., Liu, J., & Ning, K. (2014). Data fusion of electronic nose and electronic tongue for detection of mixed edible-oil.
Journal of Sensors, 7 pages.
https://doi.org/10.1155/2014/840685
[34] Hajinezhad, M., Mohtasebi, S., Ghasemi-Varnamkhasti, M., Aghbashlo, M. (2017). Detecting Adulteration in Lotus Honey Using a Machine Olfactory System. Journal of Agricultural Machinery, 7(2), 439-450. doi: 10.22067/jam.v7i2.52910. [In Persian]
[35] Tohidi, M., Ghasemi-Varnamkhasti, M., Ghasemi-Nafchi, M., Naderi boldaji, M., Jamalizadeh, F., Safieddin Ardebili, S., Khani, M. (2019). Potential of electronic nose based on temperature-modulated metal oxide gas sensors for detection of geographical origin of spices. Innovative Food Technologies, 6(2), 219-231. doi: 10.22104/jift.2018.3048.1735 [In Persian]
[36] Hayati, M., & Mohebi, Z. (2007). Application of artificial neural networks for temperature forecasting. International Journal of Electrical and Computer Engineering, 1(4), 662-666.
[37] Ghasemi-Varnamkhasti, M. (2017). Fabrication and development of a machine olfaction system combined with pattern recognition techniques for detecting formalin adulteration in raw milk. Iranian Journal of Biosystems Engineering, 47(4), 761-770. doi: 10.22059/ijbse.2017.60273
[38] Teimouri, N., Omid, M., Mollazade, K. and Rajabipour, A., 2015. An Artificial Neural Network‐Based Method to Identify Five Classes of Almond According to Visual Features. Journal of Food Process Engineering, 39(6): 625-635.