[1] Ramadan, M. F. (2020). Cold pressed cumin (Cuminum cyminum) oil. In Cold Pressed Oils (pp. 695-702): Elsevier.
[2] Sahana, K., Nagarajan, S., & Rao, L. J. M. (2011). Cumin (Cuminum cyminum L.) seed volatile oil: Chemistry and role in health and disease prevention. In Nuts and Seeds in Health and Disease Prevention (pp. 417-427): Elsevier.
[3] Embuscado, M. E. (2015). Herbs and spices as antioxidants for food preservation. In Handbook of Antioxidants for Food Preservation (pp. 251-283): Elsevier.
[4] Allahghadri, T., Rasooli, I., Owlia, P., Nadooshan, M. J., Ghazanfari, T., Taghizadeh, M., & Astaneh, S. D. A. (2010). Antimicrobial property, antioxidant capacity, and cytotoxicity of essential oil from cumin produced in Iran. J. Food Sci., 75(2), H54-H61.
[5] Petretto, G., Fancello, F., Bakhy, K., Faiz, C. A., Sibawayh, Z., Chessa, M., . . . Rourke, J. (2018). Chemical composition and antimicrobial activity of essential oils from Cuminum cyminum L. collected in different areas of Morocco. Food Biosci., 22, 50-58.
[6] Sowbhagya, H., Srinivas, P., Purnima, K. T., & Krishnamurthy, N. (2011). Enzyme-assisted extraction of volatiles from cumin (Cuminum cyminum L.) seeds. Food Chem., 127(4), 1856-1861.
[7] Chan, K. (2003). Some aspects of toxic contaminants in herbal medicines. Chemosphere., 52(9), 1361-1371.
[8] McKee, L. (1995). Microbial contamination of spices and herbs: a review. LWT - Food Sci. Technol., 28(1), 1-11.
[9] Stępień, Ł., Koczyk, G., & Waśkiewicz, A. (2011). Genetic and phenotypic variation of Fusarium proliferatum isolates from different host species. J. Appl. Genet., 52(4), 487-496.
[10] Waśkiewicz, A., Irzykowska, L., Karolewski, Z., Bocianowski, J., Kostecki, M., Goliński, P., . . . Weber, Z. (2008). Fusarium spp. and mycotoxins present in asparagus spears. Cereal Res. Commun., 36, 405-407.
[11] Chweiggert, U., Carle, R., & Schieber, A. (2007). Conventional and alternative processes for spice production–a review. Trends Food Sci. Technol., 18(5), 260-268.
[12] Roberts, P. B. (2016). Food irradiation: Standards, regulations and world-wide trade. Radiat. Phys. Chem., 129, 30-34.
[13] Akbas, M. Y., & Ozdemir, M. (2008). Effect of gaseous ozone on microbial inactivation and sensory of flaked red peppers. Int. J. Food Sci., 43(9), 1657-1662.
[14] Ban, C., Lee, D. H., Jo, Y., Bae, H., Seong, H., Kim, S. O., Choi, Y. J. (2018). Use of superheated steam to inactivate Salmonella enterica serovars Typhimurium and Enteritidis contamination on black peppercorns, pecans, and almonds. J. Food Eng., 222, 284-291.
[15] Chytiri, S., Goulas, A., Badeka, A., Riganakos, K., & Kontominas, M. (2005). Volatile and non-volatile radiolysis products in irradiated multilayer coextruded food-packaging films containing a buried layer of recycled low-density polyethylene. Food Addit Contam., 22(12), 1264-1273.
[16] Gumus, T., Albayrak, S., Sagdic, O., & Arici, M. (2011). Effect of gamma irradiation on total phenolic contents and antioxidant activities of Satureja hortensis, Thymus vulgaris, and Thymbra spicata from Turkey. Int. J. Food Prop., 14(4), 830-839.
[17] Ban, G.-H., & Kang, D.-H. (2016). Effectiveness of superheated steam for inactivation of Escherichia coli O157: H7, Salmonella Typhimurium, Salmonella Enteritidis phage type 30, and Listeria monocytogenes on almonds and pistachios. Int. J. Food Microbiol., 220, 19-25.
[18] Brodowska, A., Śmigielski, K., & Nowak, A. (2014). Comparison of methods of herbs and spices decontamination. Chemik., 68(2), 97-102.
[19] Cenkowski, S., Pronyk, C., Zmidzinska, D., & Muir, W. (2007). Decontamination of food products with superheated steam. J. Food Eng., 83(1), 68-75.
[20] Rico, C. W., Kim, G.-R., Ahn, J.-J., Kim, H.-K., Furuta, M., & Kwon, J.-H. (2010). The comparative effect of steaming and irradiation on the physicochemical and microbiological properties of dried red pepper (Capsicum annum L.). Food Chem., 119(3), 1012-1016.
[21] Idakiev, V. V., Lazarova, P. V., Bück, A., Tsotsas, E., & Mörl, L. (2017). Inductive heating of fluidized beds: Drying of particulate solids. Powder Technol., 306, 26-33.
[22] Idakiev, V. V., Steinke, C., Sondej, F., Bück, A., Tsotsas, E., & Mörl, L. (2018). Inductive heating of fluidized beds: Spray coating process. Powder Technol., 328, 26-37.
[23] Wu, S., Yang, N., Jin, Y., Li, D., Xu, Y., Xu, X., & Jin, Z. (2020). Development of an innovative induction heating technique for the treatment of liquid food: Principle, experimental validation and application. J. Food Eng., 271, 109780.
[24] Wang, G., Wan, Z., & Yang, X. (2020). Induction heating by magnetic microbeads for pasteurization of liquid whole eggs. J. Food Eng., 284, 110079.
[25] bduh, M. Y., van Ulden, W., Kalpoe, V., van de Bovenkamp, H. H., Manurung, R., & Heeres, H. J. (2013). Biodiesel synthesis from Jatropha curcas L. oil and ethanol in a continuous centrifugal contactor separator. Eur J Lipid Sci Technol., 115(1), 123-131
[26] Giustozzi, F. (2020). Novel magnetically induced healing in road pavements. In Eco-Efficient Pavement Construction Materials (pp. 315-336): Elsevier.
[27] Rudnev, V., Loveless, D., & Cook, R. L. (2017). Handbook of induction heating: CRC press.
[28] Rahmati, E., Khoshtaghaza, M. H., Banakar, A., & Ebadi, M. T. (2022). Decontamination technologies for medicinal and aromatic plants: A review. Food Sci. Nutr., 10 (3), 784-799.
[29] Yong, H. I., Lee, H., Park, S., Park, J., Choe, W., Jung, S., & Jo, C. (2017). Flexible thin-layer plasma inactivation of bacteria and mold survival in beef jerky packaging and its effects on the meat's physicochemical properties. Meat Sci., 123, 151-156.
[30] Zhao, Y., Wang, P., Zheng, W., Yu, G., Li, Z., She, Y., & Lee, M. (2019). Three-stage microwave extraction of cumin (Cuminum cyminum L.) Seed essential oil with natural deep eutectic solvents. Ind Crops Prod, 140, 111660.
[31] Gurtler, J. B., Doyle, M. P., & Kornacki, J. L. (2014). The microbiological safety of low water activity foods and spices: Springer.
[32] Rifna, E., Singh, S. K., Chakraborty, S., & Dwivedi, M. (2019). Effect of thermal and non-thermal techniques for microbial safety in food powder: Recent advances. Food Res.Int., 126, 108654.
[33] Tsai, Y.-H., Hwang, C.-C., Lin, C.-S., Lin, C.-Y., Ou, T.-Y., Chang, T.-H., & Lee, Y.-C. (2021). Comparison of microwave-assisted induction heating system (MAIH) and individual heating methods on the quality of pre-packaged white shrimp. IFSET, 73, 102787.
[34] Chen, L., Wei, X., Irmak, S., Chaves, B. D., & Subbiah, J. (2019). Inactivation of Salmonella enterica and Enterococcus faecium NRRL B-2354 in cumin seeds by radiofrequency heating. Food Control., 103, 59-69.
[35] Erdoğdu, S. B., & Ekiz, H. I. (2011). Effect of ultraviolet and far infrared radiation on microbial decontamination and quality of cumin seeds. J. Food Sci., 76(5), M284-M292.
[36] Kosalec, I., Cvek, J., & Tomic, S. (2009). Contaminants of medicinal herbs and herbal products. Arh. za Hig. Rada Toksikol., 60(4), 485.
[37] De Freitas Araújo, M. G., & Bauab, T. M. (2012). Microbial quality of medicinal plant materials. Latest Research into Quality Control, 67-81.
[38] Shavandi, M., Kashaninejad, M., Sadeghi, A., Jafari, S. M., & Hasani, M. (2020). Decontamination of Bacillus cereus in cardamom (Elettaria cardamomum) seeds by infrared radiation and modeling of microbial inactivation through experimental models. J. Food Saf., 40(1), e12730.
[39] Behera, G., Sutar, P., & Aditya, S. (2017). Development of novel high power-short time (HPST) microwave assisted commercial decontamination process for dried turmeric powder (Curcuma Longa L.). JFST, 54(12), 4078-4091.
[40] Jin, Y., Yang, N., Xu, D., He, C., Xu, Y., Xu, X., & Jin, Z. (2020). Innovative induction heating of grapefruit juice via induced electric field and its application in Escherichia coli O157: H7 inactivation. RSC Adv., 10(46), 27280-27287.
[41] Molnár, H., Bata-Vidács, I., Baka, E., Cserhalmi, Z., Ferenczi, S., Tömösközi-Farkas, R., . . . Székács, A. (2018). The effect of different decontamination methods on the microbial load, bioactive components, aroma and colour of spice paprika. Food Control, 83, 131-140.
[42] Alinezhad, M., Hojjati, M., Barzegar, H., Shahbazi, S., & Askari, H. (2021). Effect of gamma irradiation on the physicochemical properties of pistachio (Pistacia vera L.) nuts. J. Food Meas. Charact., 15(1), 199-209.
[43] Zouambia, Y., Ettoumi, K. Y., Krea, M., & Moulai-Mostefa, N. (2017). A new approach for pectin extraction: Electromagnetic induction heating. Arab. J. Chem., 10(4), 480-487.