الکتروریسی سینامالدهید در نانوالیاف کیتوزان/پلی‌کاپرولاکتون: بررسی ویژگی-های فیزیکومکانیکی، ساختاری و ضدمیکروبی جهت اهداف بسته‌بندی زیستی مواد غذایی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فرآوری‌محصولات‌شیلاتی، دانشکده‌علوم‌دریایی، دانشگاه تربیت‌مدرس، نور، ایران

2 گروه فرآوری محصولات شیلاتی، دانشکده علوم دریایی، دانشگاه تربیت مدرس، نور، ایران

3 گروه فرآوری محصولات شیلاتی، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس ، نور، ایران

چکیده

توسعه نانوالیاف‌های الکتروریسی ضدمیکروبی یکی از جدیدترین رویکردها در زمینه بسته‌بندی زیستی مواد غذایی است. در مطالعه حاضر، نانوالیاف‌های ضدمیکروبی جدید بر پایه کیتوزان (CS)/پلی‌کاپرولاکتون (PCL) حاوی سینامالدهید (CIN) در سه سطح مختلف (3، 5 و 10%، وزنی/وزنی) از طریق روش الکتروریسی ساخته شده و ویژگی‌های محلول‌های الکتروریسی و نانوالیاف‌های حاصله مورد بررسی قرار گرفت. میکروسکوپ الکترونی نشر میدانی، FE-SEM، نشان داد نانوالیاف‌های CS/PCL دارای جهت‌گیری خوب، بدون گره و دارای سطح صاف با قطر یکنواخت در طول خود بودند. فعل و انفعالات فیزیکی و پیوند هیدروژنی بین CS/PCL و CIN توسط طیف-سنجی مادون قرمز با تبدیل فوریه، FTIR، تأیید شد. این نانوالیاف‌های هیبریدی جدید استحکام مکانیکی عالی حداکثر تا 93/0 ± 76/11 مگاپاسکال (CS/CIN(10%)/PCL) را نشان دادند و عملکرد مطلوبی در مقابل بخار آب، WVP، به نمایش گذاشتند. بررسی الگوی رهایش CIN در محیط برون‌تنی نیز نشان داد که در پایان 96 ساعت، بیشترCIN موجود در نانوالیاف‌هایCS/PCL بدون رهایش باقی ماند (1/78-2/73%)، که نشان‌دهنده دوام اسانس در نانوالیاف‌های الکتروریسی می‌باشد. به‌علاوه، نانوالیاف‌های الکتروریسی حاوی بیشترین غلظت CIN (CS/CIN(10%)/PCL) فعالیت ضدباکتریایی متمایزی را نسبت به باکتری‌های گرم‌مثبت لیستریا مونوسیتوژنز و گرم‌منفی اشرشیاکلی نشان دادند. این مطالعه بینش‌هایی را به منظور طراحی مواد ضدمیکروبی جدید مبتنی بر نانوالیاف‌ها جهت کاربردهای بسته‌بندی مواد غذایی ارائه می‌دهد.

چکیده تصویری

الکتروریسی سینامالدهید در نانوالیاف کیتوزان/پلی‌کاپرولاکتون: بررسی ویژگی-های فیزیکومکانیکی، ساختاری و ضدمیکروبی جهت اهداف بسته‌بندی زیستی مواد غذایی

تازه های تحقیق

  • سینامالدهید بارگذاری شده در نانوالیاف هیبرید کیتوزان (CS)/پلی­کاپرولاکتون (PCL) با شیوه الکتروریسی تهیه گردید.
  • ریخت­شناسی سطح نانوالیاف الکتروریسی­شده متأثر از اضافه­نمودن CIN مورد بررسی قرار گرفت.
  • نانوالیاف­های الکتروریسی استحکام مکانیکی عالی و عملکرد مطلوبی در مقابل نفوذ بخار آب نشان دادند.
  • نانوالیاف CS/PCL حاوی 10% CIN فعالیت ضدباکتریایی متمایزی را در مقابل دو سویه مختلف باکتریایی نشان داد.
  • نانوالیافCS/CIN/PCL می­تواند یک انتخاب نوآورانه برای طراحی نسل جدید مواد بسته­بندی باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Electrospinning of cinnamaldehyde in chitosan/poly(ε-caprolactone) hybrid nanofibers: the investigation of physicomechanical, structural, and antimicrobial properties for food biopackaging exploits

نویسندگان [English]

  • Arezo Ghazaghi 1
  • Seyed Fakhreddin Hosseini 2
  • Masoud Rezaei 3
1 Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Iran
2 Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Iran
3 Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Iran
چکیده [English]

The development of antimicrobial electrospun nanofibrous mats is one of the most recent trends in the field of food biopackaging. Herein, novel antimicrobial fibrous mats consisting of blend electrospun chitosan (CS)/poly(ε-caprolactone) (PCL) embedded with cinnamaldehyde (CIN) were fabricated via an electrospinning approach and investigated. Field emission scanning electron microscopy (FE-SEM) manifested that as-spun fibers were well-oriented with uniform diameters along their lengths. The physical interactions and hydrogen bonding between CS/PCL and CIN were verified by Fourier-transform infrared (FTIR) spectroscopy. This novel hybrid mat demonstrated excellent mechanical strength of 11.7 ± 0.93 MPa (CS/CIN(10%)/PCL) and achieved good water vapor barrier (WVP) performance. In vitro release assay also revealed that most of CIN loaded fiber mats were remained (73.2-78.1%) after 96h, demonstrating their durability. Furthermore, the electrospun nanofibrous mats containing the highest amount of CIN (CS/CIN(10%)/PCL) exhibited distinctive antibacterial activity towards Gram-positive Listeria monocytogenes and Gram-negative Escherichia coli bacteria. This study gives insights to design new fiber-based antimicrobial nanomaterials of interest in food packaging exploits.

کلیدواژه‌ها [English]

  • Electrospinning
  • Chitosan
  • Poly(&epsilon
  • -caprolactone)
  • Cinnamaldehyde
  • Electrospun nanofibers
  • Antimicrobial packaging
[1] Wang, H., Hao, L., Wang, P., Chen, M., Jiang, S., & Jiang, S. (2017). Release kinetics and antibacterial activity of curcumin loaded zein fibers. Food Hydrocoll., 63, 437-446.
[2] Celebioglu, A., Topuz, F., Yildiz, Z. I., & Uyar, T. (2019). One-step green synthesis of antibacterial silver nanoparticles embedded in electrospun cyclodextrin nanofibers. Carbohydr Polym., 207, 471-479.
[3] Cristescu, R., Visan, A., Socol, G., Surdu, A. V., Oprea, A. E., Grumezescu, A. M., et al. (2016). Antimicrobial activity of biopolymeric thin films containing flavonoid natural compounds and silver nanoparticles fabricated by MAPLE: A comparative study. Appl. Surf. Sci. 374, 290-296.
[4] Hosseini, S. F., Ghaderi, J., & Gómez-Guillén, M. C. (2021). trans-Cinnamaldehyde-doped quadripartite biopolymeric films: Rheological behavior of film-forming solutions and biofunctional performance of films. Food Hydrocoll., 112, 106339.
[5] Ojagh, S. M., Rezaei, M., Razavi, S. H. Hosseini, S. M. H. (2010). Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chem., 120(1), 193-198.
[6] Makwana, S., Choudhary, R., Dogra, N., Kohli, P., Haddock, J. (2014). Nanoencapsulation and immobilization of cinnamaldehyde for developing antimicrobial food packaging material. LWT-Food Sci. Technol., 57(2), 470-476.
[7] Rieger, K. A., & Schiffman, J. D. (2014). Electrospinning an essential oil: Cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly (ethylene oxide) nanofibers. Carbohydr Polym., 113, 561-568.
[8] Altan, A., Aytac, Z., Uyar, T. (2018). Carvacrol loaded electrospun fibrous films from zein and poly(lactic acid) for active food packaging. Food Hydrocoll., 81, 48-59.
[9] Weiss, J., Gaysinsky, S., Davidson, M., & McClements, J. (2009). Nanostructured encapsulation systems: food antimicrobials. In Global issues in food science and technology (pp. 425-479). Academic Press.
[10] Greiner, A., & Wendorff, J. H. (2007). Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 46(30), 5670-5703.
[11] Sill, T. J., & von Recum, H. A. (2008). Electrospinning: applications in drug delivery and tissue engineering. Biomaterials, 29(13), 1989-2006.
[12] Aytac, Z., Ipek, S., Durgun, E., Tekinay, T. and Uyar, T. (2017). Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging. Food Chem., 233, 117-124.
[13] Melendez-Rodriguez, B., Castro-Mayorga, J. L., Reis, M. A., Sammon, C., Cabedo, L., Torres-Giner, S., et al. (2018). Preparation and characterization of electrospun food biopackaging films of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) derived from fruit pulp biowaste. Front. Sustain. Food Syst. 2, 38.
[14] Alehosseini, A., Gómez-Mascaraque, L. G., Martínez-Sanz, M., & López-Rubio, A. (2019). Electrospun curcumin-loaded protein nanofiber mats as active/bioactive coatings for food packaging applications. Food Hydrocoll., 87, 758-771.
[15] Panthi, G., Park, M., Kim, H. Y., & Park, S. J. (2015). Electrospun polymeric nanofibers encapsulated with nanostructured materials and their applications: a review. J. Ind. Eng. Chem. 24, 1-13.
[16] Shalumon, K. T., Anulekha, K. H., Girish, C. M., Prasanth, R., Nair, S. V., & Jayakumar, R. (2010). Single step electrospinning of chitosan/poly (caprolactone) nanofibers using formic acid/acetone solvent mixture. Carbohydr Polym., 80(2), 413-419.
[17] Liverani, L., Lacina, J., Roether, J. A., Boccardi, E., Killian, M. S., Schmuki, P., et al. (2018). Incorporation of bioactive glass nanoparticles in electrospun PCL/chitosan fibers by using benign solvents. Bioact. Mater. 3(1), 55-63.
[18] Ramalingam, R., Dhand, C., Leung, C. M., Ong, S. T., Annamalai, S. K., Kamruddin, M., et al. (2019). Antimicrobial properties and biocompatibility of electrospun poly-ε-caprolactone fibrous mats containing Gymnema sylvestre leaf extract. Mater. Sci. Eng. C. 98, 503-514.
[19] Ardekani-Zadeh, A. H., & Hosseini, S. F. (2019). Electrospun essential oil-doped chitosan/poly (ε-caprolactone) hybrid nanofibrous mats for antimicrobial food biopackaging exploits. Carbohydr Polym., 223, 115108.
[20] Rieger, K. A., & Schiffman, J. D. (2014). Electrospinning an essential oil: Cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly (ethylene oxide) nanofibers. Carbohydr Polym., 113, 561-568.
[21] Qian, Y., Zhang, Z., Zheng, L., Song, R. and Zhao, Y. (2014). Fabrication and characterization of electrospun polycaprolactone blended with chitosan-gelatin complex nanofibrous mats. J. Nanomater. 2014, p.1.
[22] ASTM. (2009). Standard test method for tensile properties of thin plastic sheeting (D 882-09). Philadelphia, PA, USA.
[23] ASTM. (2005). Standard test method for water vapour transmission of materials (E 96-05). Philadelphia, PA, USA.
[24] Yao, Z. C., Chang, M. W., Ahmad, Z. & Li, J. S. (2016). Encapsulation of rose hip seed oil into fibrous zein films for ambient and on demand food preservation via coaxial electrospinning. J. Food Eng, 191, 115-123.
[25] Deng, L., Kang, X., Liu, Y., Feng, F., & Zhang, H. (2017). Effects of surfactants on the formation of gelatin nanofibres for controlled release of curcumin. Food Chem., 231, 70–77.
[26] Van der Schueren, L., Steyaert, I., De Schoenmaker, B., & De Clerck, K. (2012). Polycaprolactone/chitosan blend nanofibres electrospun from an acetic acid/formic acid solvent system. Carbohydr Polym., 88(4), 1221-1226.
[27] Aydogdu, A., Sumnu, G., & Sahin, S. (2019). Fabrication of gallic acid loaded Hydroxypropyl methylcellulose nanofibers by electrospinning technique as active packaging material. Carbohydr Polym., 208, 241-250.
[28] Zou, Y., Zhang, C., Wang, P., Zhang, Y., & Zhang, H. (2020). Electrospun chitosan/polycaprolactone nanofibers containing chlorogenic acid-loaded halloysite nanotube for active food packaging. Carbohydr Polym., 247, 116711.
[29] Tampau, A., González-Martínez, C., & Chiralt, A. (2018). Release kinetics and antimicrobial properties of carvacrol encapsulated in electrospun poly-(ε-caprolactone) nanofibres. Application in starch multilayer films. Food Hydrocoll., 79, 158-169.
[30] Kanani, A. G., & Bahrami, S. H. (2011). Effect of changing solvents on poly (ε-caprolactone) nanofibrous webs morphology. J. Nanomater. 2011, 31.
[31] De Silva, R. T., Dissanayake, R. K., Mantilaka, M. P. G., Wijesinghe, W. S. L., Kaleel, S. S., Premachandra, T. N., ... & de Silva, K. N. (2018). Drug-loaded halloysite nanotube-reinforced electrospun alginate-based nanofibrous scaffolds with sustained antimicrobial protection. ACS Appl. Mater. Interfaces. 10(40), 33913-33922.
[32] Ghorbani, F. M., Kaffashi, B., Shokrollahi, P., Seyedjafari, E., & Ardeshirylajimi, A. (2015). PCL/chitosan/Zn-doped nHA electrospun nanocomposite scaffold promotes adipose derived stem cells adhesion and proliferation. Carbohydr Polym., 118, 133-142.
[33] Koosha, M., & Mirzadeh, H. (2015). Electrospinning, mechanical properties, and cell behavior study of chitosan/PVA nanofibers. J. Biomed. Mater. Res A. 103(9), 3081-3093.
[34] Xue, J., He, M., Liu, H., Niu, Y., Crawford, A., Coates, P. D., et al. (2014). Drug loaded homogeneous electrospun PCL/gelatin hybrid nanofiber structures for anti-infective tissue regeneration membranes. Biomaterials, 35(34), 9395-9405.
[35] Fadaie, M., Mirzaei, E., Geramizadeh, B. & Asvar, Z. (2018). Incorporation of nanofibrillated chitosan into electrospun PCL nanofibers makes scaffolds with enhanced mechanical and biological properties. Carbohydr Polym., 199, 628-640.
[36] Shi, R., Geng, H., Gong, M., Ye, J., Wu, C., Hu, X., et al. (2018). Long-acting and broad-spectrum antimicrobial electrospun poly (ε-caprolactone)/gelatin micro/nanofibers for wound dressing. J. Colloid Interface Sci. 509, 275-284.
[37] Ghasemlou, M., Khodaiyan, F., & Oromiehie, A. (2011). Physical, mechanical, barrier, and thermal properties of polyol-plasticized biodegradable edible film made from kefiran. Carbohydr. Polym., 84(1), 477-483.
[38] Hosseini, S. F., Rezaei, M., Zandi, M., & Farahmandghavi, F. (2015). Fabrication of bionanocomposite films based on fish gelatin reinforced with chitosan nanoparticles. Food Hydrocoll., 44, 172-182.
[39] Zaman, H. U., & Beg, M. D. H. (2015). Improvement of physico-mechanical, thermomechanical, thermal and degradation properties of PCL/gelatin biocomposites: Effect of gamma radiation. Radiat. Phys. Chem. 109, 73-82.
[40] Zhang, L., Liu, Z., Sun, Y., Wang, X., & Li, L. (2020). Effect of α-tocopherol antioxidant on rheological and physicochemical properties of chitosan/zein edible films. LWT, 118, 108799.
[41] Chen, H., Hu, X., Chen, E., Wu, S., McClements, D. J., Liu, S., ... & Li, Y. (2016). Preparation, characterization, and properties of chitosan films with cinnamaldehyde nanoemulsions. Food Hydrocoll., 61, 662-671.
[42] Reshmi, C. R., Sundaran, S. P., Juraij, A., & Athiyanathil, S. (2017). Fabrication of superhydrophobic polycaprolactone/beeswax electrospun membranes for high-efficiency oil/water separation. RSC Adv. 7(4), 2092-2102.
[43] Hosseini, S. F., & Gómez-Guillén, M. C. (2018). A state-of-the-art review on the elaboration of fish gelatin as bioactive packaging: Special emphasis on nanotechnology-based approaches. Trends Food Sci. Technol, 79, 125-135.
[44] Liu, F., Guo, R., Shen, M., Wang, S., & Shi, X. (2009). Effect of processing variables on the morphology of electrospun poly [(lactic acid)‐co‐(glycolic acid)] nanofibers. Macromol. Mater. Eng. 294(10), 666-672.
[45] Joseph, C. S., Prashanth, K. H., Rastogi, N. K., Indiramma, A. R., Reddy, S. Y., & Raghavarao, K. S. M. S. (2011). Optimum blend of chitosan and poly-(ε-caprolactone) for fabrication of films for food packaging applications. Food Bioproc Tech, 4(7), 1179-1185.
[46] Rhim, J. W., Wang, L. F., & Hong, S. I. (2013). Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocoll., 33(2), 327-335.
[47] Hong, S., & Kim, G. (2011). Fabrication of electrospun polycaprolactone biocomposites reinforced with chitosan for the proliferation of mesenchymal stem cells. Carbohydr Polym., 83(2), 940-946.
[48] Ko, J., Cho, K., Han, S. W., Sung, H. K., Baek, S. W., Koh, W. G., et al. (2017). Hydrophilic surface modification of poly(methyl methacrylate)-based ocular prostheses using poly(ethylene glycol) grafting. Colloids Surf. B. 158, 287–294.
[49] Farahmandghavi, F., Imani, M., & Hajiesmaeelian, F. (2019). Silicone matrices loaded with levonorgestrel particles: Impact of the particle size on drug release. J. Drug Deliv. Sci. Technol, 49, 132-142.
[50] Miguel, S. P., Sequeira, R. S., Moreira, A. F., Cabral, C. C., Mendonça, A. G., Ferreira, P., et al. (2019). An overview of electrospun membranes loaded with bioactive molecules for improving the wound healing process. Eur J Pharm Biopharm, 139, 1-22.
[51] Li, Z., Zhou, P., Zhou, F., Zhao, Y., Ren, L., & Yuan, X. (2018). Antimicrobial eugenol-loaded electrospun membranes of poly (ε-caprolactone)/gelatin incorporated with REDV for vascular graft applications. Colloids Surf. B. 162, 335-344. [52] Fahimirad, S., Abtahi, H., Satei, P., Ghaznavi-Rad, E., Moslehi, M., & Ganji, A. (2021). Wound healing performance of PCL/chitosan based electrospun nanofiber electrosprayed with curcumin loaded chitosan nanoparticles. Carbohydr Polym., 259, 117640.
[53] Kayaci, F., Ertas, Y., & Uyar, T. (2013). Enhanced thermal stability of eugenol by cyclodextrin inclusion complex encapsulated in electrospun polymeric nanofibers. J. Agric. Food Chem., 61 (34), 8156-8165.
[54] Coma, V., Martial-Gros, A., Garreau, S., Copinet, A., Salin, F., & Deschamps, A. (2002). Edible antimicrobial films based on chitosan matrix. J. Food Sci. 67, 1162-1169.
[55] Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods-a review. Int. J. Food Microbiol. 94, 223-253.
[56] Bozin, B., Mimica-Dukic, N., Samojlik, I., & Jovin, E. (2007). Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. J. Agric. Food Chem., 55(19), 7879-7885.
[57] Ouattara, B., Simard, R. E., Holley, R. A., Piette, G. J. P., & Bégin, A. (1997). Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms. Int. J. Food Microbiol. 37(2-3), 155-162.
[58] Shan, B., Cai, Y. Z., Brooks, J. D., & Corke, H. (2007). The in vitro antibacterial activity of dietary spice and medicinal herb extracts. Int. J. Food Microbiol. 117(1), 112-119.
[59] Kim, J. M., Marshall, M. R., Cornell, J. A., III, J. P., & Wei, C. I. (1995). Antibacterial activity of carvacrol, citral, and geraniol against Salmonella typhimurium in culture medium and on fish cubes. J. Food Sci. 60(6), 1364-1368.