پیش‌بینی فعالیت آنزیم پراکسیداز با استفاده از تصویربرداری فراطیفی فروسرخ نزدیک در سیب رددلیشز طی دوره نگهداری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه مهندسی بیوسیستم، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 دانش آموخته دکتری، گروه مهندسی بیوسیستم، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

10.22104/ift.2022.5414.2085

چکیده

از آنجا که فعالیت آنزیمی یکی از پارامترهای کیفی مهم سیب به شمار می رود، در این تحقیق اثر طول دوره انبارداری سرد بر مقدار فعالیت آنزیم پراکسیداز در سیب رقم رددلیشز به مدت 60 روز مطالعه شد. تصویربرداری فراطیفی بازتابی در محدوده طول‌موج nm 1100-400 انجام و فعالیت آنزیمی در نمونه‌ها نیز براساس روش های استاندارد اندازه گیری شد. پس از حذف نویزها با آنالیز PCA، برای بهبود طیف، پیش‌پردازش‌های اولیه مختلف اعمال و اثرات آن‌ها مورد مطالعه قرار گرفت. مدل مناسب با استفاده از روش حداقل مربعات جزئی (PLS) تعیین شد. طول‌موج‌های مؤثر با استفاده از الگوریتم های پیش بینی متوالی (SPA) و ضریب رگرسیون (RC) بهترین مدل انتخاب و با استفاده از روش‌های مختلف مدل‌سازی شد. بر اساس آنالیز PLS بهترین نتایج با پیش‌پردازش هموارسازی ساویتزکی-گولای با 574/0=RMSEC، 948/0=R2c، 518/0=RMSECV، 940/0=R2CV حاصل شد. بر اساس آنالیز داده های پیش پردازشی با ضریب رگرسیون (RC) و الگوریتم های پیش بینی متوالی (SPA) 9 طول‌موج به عنوان طول‌موج های مؤثر در تخمین فعالیت آنزیم پراکسیداز در نمونه ها تعیین شدند. در مدل‌سازی با استفاده از طول‌موج های مؤثر، مدل تلفیق شبکه عصبی مصنوعی (ANN) و الگوریتم های پیش بینی متوالی (SPA) بهترین نتیجه را داشت. در نتیجه به نظر می‌رسد روش تصویربرداری فراطیفی می تواند به عنوان ابزاری با ارزش برای پیش بینی فعالیت آنزیم پراکسیداز در سیب طی دوره نگه داری بکار برده شود و طول‌موج انتخابی می تواند منابع بالقوه برای توسعه یک ابزار غیرمخرب باشد.

چکیده تصویری

پیش‌بینی فعالیت آنزیم پراکسیداز با استفاده از تصویربرداری فراطیفی فروسرخ نزدیک در سیب رددلیشز طی دوره نگهداری

تازه های تحقیق

  • از تصویربرداری فراطیفی مادون قرمز نزدیک برای تخمین فعالیت آنزیم پرکسیداز در سیب رقم رد دلیشز طی دوره نگه­داری استفاده شد.
  • اثر روش­های مختلف پیش پردازش بر روی مدل PLS مورد مطالعه قرار گرفت.
  • طول موج های موثر برای تشخیص pH سیب بر اساس ضریب رگرسیون بهترین مدل PLS و الگریتم پیش­بینی متوالی (SPA) انتخاب شدند.
  • مدل­های مختلف رگرسیونی با طول موج­های موثر ایجاد و کارآیی آن­ها با یکدیگر مقایسه شد

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Prediction of peroxidase activity using near infrared hyperspectral imaging in red delicious apple fruit during storage time

نویسندگان [English]

  • Abdollah Golmohammadi 1
  • Mahsa Sadat Razavi 2
  • Mohammad Tahmasebi 2
1 Associate Professor, Department of Biosystems Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
2 PhD Graduated, Department of Biosystems Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

Regarding this fact that peroxidase (POD) activity is considered as one of the important qualitative parameters of apple fruits, in this study, the effect of cold storage on POD activity of Red Delicious apples were investigated during 60 days. Hyperspectral reflecting imaging in range of 400-1000 nm has been applied while POD of samples were measured according to standard methods. After discarding noises using principal component analysis (PCA), to improve spectrum, different primary pre-processing had been applied and their effects were investigated. The suitable model was obtained via Partial Least Square method (PLS). Important wavelengths were selected based on regression coefficient of the best model includes large absolute values of weighted regression coefficients (RC) and sequential predictions algorithm (SPA) and using various techniques were modeled. Concerning the PLS analysis, the best results were obtained through smoothing Savitzky-Golay pre-processing with mean square root error (RMSE) of 0.475 and 0.518 and coefficient of determination (R2) of 0.948 and 0.940 for calibration and validation data, respectively. According to RC and SPA, 9 wavelengths were determined as the best. In modeling by efficient wavelength, artificial neural network (ANN) and SPA Combined Model gave the best result. The results indicated that hyperspectral imaging could be considered as a valuable tool for POD activity prediction and the selected wavelengths could be potential resources for instrument development.

کلیدواژه‌ها [English]

  • Shelf life
  • peroxidase
  • hyperspectral imaging
  • Apple
  • Non-destructive
  • Thovhogi, F. (2009). Consumer reference (of red-fleshed apples) an quantification of quality related traits, particularly skin and flesh colour, in apple breeding families. Stellenbosch, South Africa: University of Stellenbosch, Department of Horticulture.
  • Hosseinpour, R., Ahmadi, K., Ebadzadeh, H., Mohammadnia S., Afroozi & Abbasteghani, R. (2014). Export and import of agricultural sector. Tehran, I.R. Iran: Ministry of Jihad Keshvarzi Publisher. [In Persian]
  • FAO (Food and Agriculture Organization). Crops and livestock products, 2019. URL http://www.fao.org/faostat/en/#data/QCL. Accessed 08.08.21.
  • Rai, M., Ribeiro, C., Mattoso, L., & Duran, N. (2015). Nanotechnologies in food and agriculture. New York: Springer.
  • Du, C. J., & Sun, D. W. (2006). Learning techniques used in computer vision for food quality evaluation: a review. Food Eng., 72(1), 39-55.
  • Park, B., & Lu, R. (Eds.). (2015). Hyperspectral imaging technology in food and agriculture. New York: Springer.
  • ElMasry, G., Kamruzzaman, M., Sun, D. W., & Allen, P. (2012). Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: a review. Rev. Food Sci. Nutr., 52(11), 999-1023.
  • Gowen, A. A., Taghizadeh, M., & O’Donnell, C. P. (2009). Identification of mushrooms subjected to freeze damage using hyperspectral imaging. Food Eng., 93(1), 7-12.
  • Smulevich, G., Feis, A., Howes, B. D., & Ivancich, A. (2010). Structure-function relationships among heme peroxidases: New insights from electronic absorption, resonance Raman and multifrequency electron paramagnetic resonance spectroscopies. In: Kadish, K. M., Guilard, R., & Smith, K. M. (Eds.). Handbook of Porphyrin Science with Applications to Chemistry, Physics, Materials Science, Engineering, Biology and Medicine (pp. 367-453).
  • Belitz, H. D., Grosch, W., & Schieberle, P. (2008). Food chemistry. New York: Springer.
  • Berg, J. M., Tymoczko, J. L., & Stryer, L. (2008). Biochemistry (Loose-Leaf). New York: Macmillan.
  • Gaston, E., Frias, J. M., Cullen, P. J., O'Donnell, C. P., & Gowen, A. A. (2010). Prediction of polyphenol oxidase activity using visible near-infrared hyperspectral imaging on mushroom (Agaricus bisporus) caps. Agric. Food Chem., 58(10), 6226-6233.
  • Kong, W., Liu, F., Zhang, C., Bao, Y., Yu, J., & He, Y. (2014). Fast detection of peroxidase (POD) activity in tomato leaves which infected with Botrytis cinerea using hyperspectral imaging. Acta A Mol. Biomol. Spectrosc., 118, 498-502.
  • Yang, Y. C., Sun, D. W., Wang, N. N., & Xie, A. (2015). Real-time evaluation of polyphenol oxidase (PPO) activity in lychee pericarp based on weighted combination of spectral data and image features as determined by fuzzy neural network. Talanta, 139, 198-207.
  • Nadafzadeh, M., Mehdizadeh, S. A., & Soltanikazemi, M. (2018). Development of computer vision system to predict peroxidase and polyphenol oxidase enzymes to evaluate the process of banana peel browning using genetic programming modeling. Hortic., 231, 201-209.
  • Pan, T. T., Sun, D. W., Paliwal, J., Pu, H., & Wei, Q. (2018). New method for accurate determination of polyphenol oxidase activity based on reduction in SERS intensity of catechol. Agric. Food Chem., 11180-11187.
  • Li, Q., & Hu, Y. (2019). Kinetic models of peroxidase activity in potato leaves infected with late blight based on hyperspectral data. J. Agric. Biol. Eng., 12(2), 160-165.
  • Polder, G., van der Heijden, G. W., Keizer, L. P., & Young, I. T. (2003). Calibration and characterisation of imaging spectrographs. Near Infrared Spectrosc, 11(3), 193-210.
  • Xu, K., Wang, A., & Brown, S. (2012). Genetic characterization of the Ma locus with pH and titratable acidity in apple. Breed., 30(2), 899-912.
  • Terefe, N. S., Yang, Y. H., Knoerzer, K., Buckow, R., & Versteeg, C. (2010). High pressure and thermal inactivation kinetics of polyphenol oxidase and peroxidase in strawberry puree. Food Sci. Emerg. Technol., 11(1), 52-60.
  • Rossel, R. A. V. (2008). ParLeS: Software for chemometric analysis of spectroscopic data. Intell. Lab. Syst., 90(1), 72-83
  • Tahmasebi, M., Golmohammadi, A., & Tabatabaei-kolor, R. (2017). Measuring of Paddy mass flow using capacitive sensor and modeling with using multiple regression, ANN, and ANFIS models. J. Biosyst, Eng., 48 (2), 221-227. [In Persian]
  • Zhang, T., Fan, S., Xiang, Y., Zhang, S., Wang, J., & Sun, Q. (2020). Non-destructive analysis of germination percentage, germination energy and simple vigour index on wheat seeds during storage by Vis/NIR and SWIR hyperspectral imaging. Acta A Mol. Biomol. Spectrosc., 239, 118488.
  • Gao, Q., Wang, M., Guo, Y., Zhao, X., & He, D. (2019). Comparative Analysis of Non-Destructive Prediction Model of Soluble Solids Content for Malus micromalus Makino Based on Near-Infrared Spectroscopy. IEEE Access., 7, 128064-128075.
  • Aslmoshtaghi, E., & Shahsavar, A. R. (2016). Peroxidase, polyphenol oxidase and protein changes in olives during adventitious root formation. Trakia J. Sci., 14(2), 176-182.
  • Deutch, C. E. (2018). Browning in apples: Exploring the biochemical basis of an easily‐observable phenotype. Mol. Biol. Educ., 46(1), 76-82.
  • Hutabarat, O. S., & Halbwirth, H. (2019). Polyphenol oxidase and peroxidase activity in apple: dependency on cultivar and fruit processing. In: 3rd Int Sympos Agric Biosyst. Eng. (pp. 1-8), South Sulawesi, Indonesia.
  • Othman, O. C. (2012). Polyphenoloxidase and perioxidase activity during open air ripening storage of pineapple (Ananas comosus), mango (Mangifera indica) and papaya (Carica papaya) fruits grown in Dares Salaam, Tanzania. Tanz. J. Sci., 38(3), 84-94.
  • Can, Z., Dincer, B., Sahin, H., Baltas, N., Yildiz, O., & Kolayli, S. (2014). Polyphenol oxidase activity and antioxidant properties of Yomra apple (Malus communis) from Turkey. J. Enzyme. Inhib. Med. Chem., 29(6), 829-835.
  • Eshghi, S., Hashemi, M., Mohammadi, A., Badii, F., Mohammad hoseini, Z., & Ahmadi, K. (2014). Effect of nanochitosan-based coating with and without copper loaded on physicochemical and bioactive components of fresh strawberry fruit (Fragaria x ananassa Duchesne) during storage. Food Tech., 7(8), 2397-2409.
  • Cozzolino, D., Cynkar, W. U., Shah, N., & Smith, P. (2011). Multivariate data analysis applied to spectroscopy: Potential application to juice and fruit quality. Food Res. Int., 44(7), 1888-1896.
  • Jamshidi, B., Minaei, S., Mohajerani, E., & Ghassemian, H. (2012). Reflectance Vis/NIR spectroscopy for nondestructive taste characterization of Valencia oranges. Electron. Agric., 85, 64-69.
  • Heidari, P., Rezaei, M., Sahebi, M., & Khadivi, A. (2019). Phenotypic variability of Pyrus boissieriana Buhse: Implications for conservation and breeding. Hortic., 247, 1-8.
  • Khodabakhshian, R., Emadi, B., Khojastehpour, M., Golzarian, M. R., & Sazgarnia, A. (2017). Non-destructive evaluation of maturity and quality parameters of pomegranate fruit by visible/near infrared spectroscopy. J. Food Prop., 20(1), 41-52.
  • Rahman, A., Kandpal, L. M., Lohumi, S., Kim, M. S., Lee, H., Mo, C., & Cho, B. K. (2017). Nondestructive estimation of moisture content, pH and soluble solid contents in intact tomatoes using hyperspectral imaging. Sci., 7(1), 109.
  • Kim, S. Y., Hong, S. J., Kim, E., Lee, C. H., & Kim, G. (2021). Neural Network based Prediction of Soluble Solids Concentration in Oriental Melon using VIS/NIR spectroscopy. Appl Eng Agric, 37(4), 653-663
  • Jamshidi, B., Minaei, S., Mohajerani, E., & Ghassemian, H. (2012). Reflectance Vis/NIR spectroscopy for nondestructive taste characterization of Valencia oranges. Electron. Agric., 85, 64-69.
  • Merzlyak, M. N., Solovchenko, A. E., & Gitelson, A. A. (2003). Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit. Postharvest Biol. Technol., 27(2), 197-211.
  • Magwaza, L. S., Opara, U. L., Nieuwoudt, H., Cronje, P. J., Saeys, W., & Nicolaï, B. (2012). NIR spectroscopy applications for internal and external quality analysis of citrus fruit—a review. Foo Bioproc, Tech, 5(2), 425-444.
  • Razavi, M. S., Golmohammadi, A., Sedghi, R., & Asghari, A. (2020). Prediction of bruise volume propagation of pear during the storage using soft computing methods. Food Sci. Nutr., 8(2), 884-893.
  • Golmohammadi, A., Tahmasebi, M., & Razavi, M. S. (2021). Near infrared hyperspectral imaging for non-destructive determination of pH value in red delicious apple fruit during shelf life. Food Technol., 9(2), 99-111. [In Persian]
  • Sabzi, S., Pourdarbani, R., Rohban, M. H., Fuentes-Penna, A., Hernández-Hernández, J. L., & Hernández-Hernández, M. (2021). Classification of Cucumber Leaves Based on Nitrogen Content Using the Hyperspectral Imaging Technique and Majority Voting. Plants, 10(5), 898-911.
دوره 9، شماره 3
اردیبهشت 1401
صفحه 239-254
  • تاریخ دریافت: 22 دی 1400
  • تاریخ بازنگری: 27 اسفند 1400
  • تاریخ پذیرش: 09 فروردین 1401
  • تاریخ اولین انتشار: 09 فروردین 1401