توسعه و ارزیابی سامانه غیر‌مخرب تلفیقی امواج فراصوت، سنجش مقاومت و رنگ سنجی برای تعیین ویژگی‌های بافتی فیله ماهی قزل‌آلای رنگین کمان Oncorhynchus mykiss)) در طول دوره نگهداری در یخچال

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجو دکتری بخش مهندسی مکانیک بیوسیستم دانشگاه شیراز

2 بخش مهندسی بیوسیستم، دانشگاه شیراز

3 بخش مهندسی منابع طبیعی و محیط زیست، دانشگاه شیراز

4 خش علوم و صنایع غذایی و گروه پژوهشی فرآوری آبزیان ، دانشگاه شیراز

5 دانشیار ، بخش مهندسی بیوسیستم، دانشگاه شیراز

چکیده

در این پژوهش توانایی سامانه تلفیقی غیرمخرب امواج فراصوت، سنجش مقاومت الکتریکی و رنگ سنجی برای تعیین کیفیت فیله ماهی‌ قزل‌آلا طی مدت نگهداری (12 روز) با تعیین ویژگی‌های بافتی (سختی، شکنندگی، چسبناکی، قابلیت ارتجاعی، صمغی بودن و قابلیت جویدن) مورد بررسی و ارزیابی قرار گرفت. هم زمان آزمایش‌های فیزیکی، مکانیکی، شیمیایی و حسی روی فیله‌ها انجام شد. عملکرد روش‌های شبکه عصبی و ماشین‌ بردار پشتیبان برای پیش‌بینی و مدل‌سازی خصوصیات بافتی مورد مقایسه قرار گرفتند. در هریک از مدل‌ها خصوصیات فیزیکی به عنوان ورودی و خصوصیات بافتی به عنوان خروجی در نظر گرفته شده و مدل‌سازی‌ها انجام گرفت. نتایج نشان داد در پیش‌بینی شاخص‌های سختی، شکنندگی و قابلیت ارتجاعی روش ماشین بردار پشتیبان و در شاخص‌های چسبناکی، صمغی بودن و قابلیت جویدن، روش شبکه عصبی توانمندی بیشتری برای مدل‌سازی ویژگی های بافتی را دارا بودند، به طوری که ریشه میانگین مربعات خطا (RMSE) شاخص‌های سختی، شکنندگی، چسبناکی، قابلیت ارتجاعی، صمغی بودن و قابلیت جویدن به ترتیب برابر 114/0، 025/0، 015/0، 015/0، 044/0 و 171/0 و ضریب همبستگی آنها نیز به ترتیب برابر 993/0، 985/0، 992/0، 961/0، 995/0 و 995/0 است. بنابراین سامانه پیشنهادی غیرمخرب در ترکیب با روش‌های هوش مصنوعی به عنوان ابزاری غیرمخرب و کارآمد برای پایش و کنترل کیفیت در طول نگهداری فیله ماهی قزل‌آلا ارائه می‌شود.

چکیده تصویری

توسعه و ارزیابی سامانه غیر‌مخرب تلفیقی امواج فراصوت، سنجش مقاومت و رنگ سنجی برای تعیین ویژگی‌های بافتی فیله ماهی قزل‌آلای رنگین کمان Oncorhynchus mykiss)) در طول دوره نگهداری در یخچال

تازه های تحقیق

  • توسعه و ارزیابی سامانه ای که هم غیرمخرب باشد و هم اینکه به صورت ترکیبی و تلفیق چند روش فیزیکی می باشد.
  • استفاده از دو روش برای پیش بینی (شبکه عصبی مصنوعی و ماشین بردار پشتیبان) و مقایسه عملکرد آنها.
  • تعیین ویژگی های بافتی محصولات غذایی با استفاده از روش های مرسوم، هم زمان بر بوده و هم مخرب، اما استفاده از روش های فیزیکی استفاده شده در این مقاله در کمترین زمان ممکن و بیشترین دقت قادر است که ویژگی های بافتی ماهی  را پیش بینی کند.   

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Development and Evaluation of Integrated Non-Destructive Ultrasound, Resistance and Colorimetric System for Determination of Texture Properties of Rainbow Trout Fillet (Oncorhynchus mykiss) During Refrigeration

نویسندگان [English]

  • hasan safiyari 1
  • Seyed Mehdi Nassiri 2
  • Mahmood Naseri 3
  • Marzieh Moosavi-Nasab 4
  • Abdolabbas Jafari 5
1
2 Biosystems Engineering Department Shiraz University Shiraz, Iran
3 Department of Natural Resources and Environmental Engineering, Shiraz University, Shiraz, Iran.
4 Department of Food Science & Technology, Shiraz University, Shiraz, Iran.
5 Department of Biosystems Engineering, Shiraz University, Shiraz, Iran.
چکیده [English]

In this research, the ability of the integrated non-destructive system including ultrasound, electrical resistance measurements and colorimetric assays to predict the textural properties (hardness, brittleness, viscosity, elasticity, guminess and chewiness) of trout fillets were evaluated. For this purpose, fillets were stored for 12 days at refrigerator temperature and then examined at interval times. At the same time physical, mechanical, chemical and sensory tests were performed on the fillets. The performance of neural network and support vector machine methods for predicting and modeling tissue properties were compared. In each model, physical properties were considered as inputs and textural properties as outputs and modeling was performed. The results showed that in the prediction of hardness, fragility and elasticity of the support vector machine and in the viscous, resin and chewability indices, the neural network method had more capability to model the texture properties, so that the root mean square error (RMSE) Hardness, fragility, viscosity, elasticity, gum and chewability indices were equal to 0.144, 0.025, 0.015, 0.015, 0.044 and 0.171 respectively and their correlation coefficients were equal 0.993, 0.985, 0.992, 0.961, 0.995 and 0.995. Therefore, the proposed non-destructive system in combination with artificial intelligence methods showed promises as a non-destructive and efficient tool for monitoring and quality control during trout fillet storage.

کلیدواژه‌ها [English]

  • Non-destructive
  • Rainbow trout (Oncorhynchus mykiss)
  • Texture properties
  • Ultrasound
  • Resistance
  • Colorimetric
[1] Razavi-Shirzi, H. (2007). Seafood technology, principles of handling and processing (1). Parsnegar Press, 325 p.
[2] Kamani, M. H., Mortazavi, S. A., Safari, O., & Mehrban, M. (2014). Investigation of fat oxidation of rainbow trout fillet at 4 °C using image processing technique. J. of Inno. Food Tech., 2(1): 59-65. [In Persian]
[3] Omidi-Arjenaki, O., Ghanbarian, D., & NaderiBoldaji, M. (2018). Evaluation and prediction of mechanical properties of potato during storage by laser light backscattering imaging. Food Sci. and Tech., 15(10): 237-250. [In Persian]
 [4] Zaki Dizaji, H., Minaei, S., Tavakkoli Hashtjin, T., Mokhtari, M., & Montazer, A. (2009). An ultrasonic investigation of agricultural product quality. 5th National Conference on Agriculture Machinary Engineering and Mechanization, Mashhad, Iran. [In Persian]
[5] Zolfaghari, M., Shabanpoor, B., & Fallahzadeh, S. (2011a). Comparison the effect of thyme, onion and ziziphora clinopodiodes extracts on shelflife of rainbow trout (Oncorhynchus mykiss). J. of Iranian Food Sci. and Tech. Res., 6(2): 121-129. [In Persian]
[6] Etemadian, Y., Shabanpour, B., SadeghiMahoonak, A. R., Shabani, A., Yahyaee, M., & Dordiee, K. H. (2012). Effect of vacuum packaging on chemical, microbiological and sensory properties of (Rutilus Frissi Kutum) fillets stored in ice. J. of Iranian Food Sci. and Tech. Res., 7(4): 298-304. [In Persian]
[7] Safiyari, H., Gerami, M. H., Jafari, A., & Moosavi-nasab, M. (2015). Chemical-morphological relationships of rainbow trout (Oncorhynchus mykiss) computed by machine vision. J. of Fish. Sci. and Tech., 4(1):53-69. [In Persian]
[8] Zolfaghari, M. Shabanpour, B. & Fallahzadeh, S. (2010). The effect of light salting, vacuum packaging and their synergistic effect on shelflife of rainbow trout (Oncorhynchus mykiss) fillet during storage at 4°C±1. J. of Food Sci. and Tech., 31: 35-44. [In Persian]
 [9] Cheng, J. H., Qu, J. H., Sun, D. W., & Zeng, X. A. (2014). Visible/near-infrared hyperspectral imaging prediction of textural firmness of grass carp (Ctenopharyngodon Idella) as affected by frozen storage. Food Res. Inter., 56, 190–198.
 [10] Abbasi, S. (2007). Food Texture and Viscosity: concept and measurement. 384 P.
[11] Casas, C., Martinez, O., Guillen, M., Pin, C., & Salmeron, J. (2006). Textural properties of raw Atlantic salmon (Salmo Salar) at three points along the fillet, determined by different methods. Food Cont., 17(7), 511–515.
[12] Razavi-Shirazi, H., Murata, M., Sakagushi, M., & Kuwana, S. (1990). Influences of Partial Freezing on Torrymeter Readings and K values of Yellowtail Fillets. Nippon Suisan. Gakkaishi., 56(5).
[13] Tokunaga, K., Uchino, E., Tanaka, H., & Suetake, N. (2016). Intravascular ultrasound-based tissue characterization using modular network self organizing map. Appl. Soft Comp., 44: 89-100.
[14] Dowlati, M., S. S. Mohtasebi., M. Omid., S. H. Razavi., M. Jamzad., & Guardia, M. (2013). Freshness assessment of gilthead sea bream (Sparus aurata) by machine vision based on gill and eye color changes. J. of Food Eng., 119, 277-287.
[15] Memar-Dastjerdi, R., Minaei, S., & Khoshtaghaza, M.H. (2014). Quality Analysis of Pear Fruit of Shah Miveh variety Using Nondestructive Ultrasonic Technique., 4(2): 324-334. [In Persian] [16] Nowak, K., Markowski, N., & Daszkiewicz, K. (2015). Ultrasonic determination of mechanical properties of meat products. J. of Food Eng., 147, 49- 55.
[17] Prakash, M. N. K., & Ramana, K. V. R. (2003). Ultrasound and its application in the food industry. J. of Food Sci. and Tech., 40(6), 563-570.
 [18] Mizrach, A., Galili, N., and Rosenhouse, G., (1989). Determination of fruit and vegetable properties by ultrasonic excitation. Trans. of the ASAE., 32(6), 2053–2058.
[19] Kim, K. B., Jung, H. M., Kim, M. S., & Kim, G.S. (2004). Evaluation of fruit firmness by ultrasonic 96 measurement. Adv. In Nondes. Evalu. PT 1-3 Key Engineering Materials, 270-273: 1049-1054, Part 1-3.
 [20] Abolghasemi, R., Emadi, B., Aghkhani, M. H., & Beiraghi Toosi, S. H. )2009(. Determination of peach maturity using ultrasonic waves. J. of Food Sci. and Tech. Res., 5: 63-74.
[21] Llull, P., Simal, S., & Femenia, A. (2002). The use of ultrasound velocity measurement to evaluate the textural properties of sobrassada from Mallorca. J. of Food Eng., 52: 323-330.
[22] Simal, S., Benedito, J., Clemente, G., Femenia, A., Rosselloo, C. (2003). Ultrasonic determination of the composition of a meat-based product. J. of Food Eng., 58, 253-257.
[23] Nowak, K. (2015). Identification of meat types by ultrasonic methods. J. of Tech Sci., 18(2), 79-84.
[24] Tokunaga, K., Saeiki, C., Taniguchi, S., Nakano, S., Ohta, H., & Nakamura, M. (2020). Nondestructive evaluation of fish meat using ultrasound signals and machine learning methods. J. of Aqua. Eng., 89.
 [25] Sol, T., Hayun, S., Noiman, D., Tiferet, E., Yeheskel, O & Tevet, O. (2018). Nondestructive ultrasonic evaluation of additively manufactured AlSi10Mg samples. J. of Add. Manuf., 22: 700-707.
 [26] Hajiheydari, F., Massah, J & Derafshi, M. H. (2015). Design, development and test of apparatus to measurement of electrical resistance and impedance of fruit. Iranian J. of Biosys. Eng., 44(1): 17-25. [In Persian]
[27] Ghanbarzadeh, B. (2008). Principles of Food and Biopolymer Rheology. Tehran University, Tehran. 385 P.
[28] Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Can. J. Biochem. Phys., 37: 911-917.
 [29] AOAC, 2005. Official Method of Analysis, 17th ed. Association of Official Analytical Chemists, Washington, DC.
[30] AOAC. 2000. Official Methods of Analysis, 17th ed. Association of Analytical Chemists, Procedur. Washington, DC.
[31] Sanaeifar, A. (2017). Design, development and evaluation of an intelligent integrated system for olive oil quality assessment based on machine vision and dielectric spectroscopy. Ph. D. dissertation in mechanics of agricultural machinery engineering. Agriculture Faculty, Shiraz University.
 [32] Jeddi, S., Jafarpour, A., Yeganeh, S., & Naseri, M. (2018). Evaluation of color and tissue of rainbow trout fillet by chitosan edible coating incorporated with marjoram essential oil during refrigerated storage. J. of Fish. Sci. and Tech., 7(1): 33-39. [In Persian]
[33] Vafa, S. (2016). Effect of various freezing and thawing methods on physico-chemical properties of rainbow trout (Oncorhynchus mykiss). Thesis in natural resourse science, Agriculture Faculty, Shiraz University.
 [34] Kazemi, F. Abdanan, S., & Orak, H. (2019). Study of color and textural feature variation of carp meat using image processing. J. of Innov. Food Tech., 6(2): 257-276. [In Persian]
 [35] Nasiri, E., Hesari, J., Shekarforoush, S. S., Kooshesh, S. (2016). Effect of aqueous extract of myrtle leaves (Myrtus communis) on quality changes of farmed gutted rainbow trout (Oncorhynchus mykiss) during chilled (4±1°C) storage. Iranian Sci. Fish. J., 25(3). [In Persian]
[36] Ojagh, S. M. Rezaei, M. Razavi, S. H. Hosseini, S. M. H. (2012). Effect of antimicrobial coating on shelf-life extension of rainbow trout (Oncorhynchus mykiss). J. of Iranian Food Sci. and Tech., 34(9). [In Persian]
[37] Taghizadeh G. H., & Rezaei, M. (2012). Effect of gelatin coatings on chemical, microbial and sensory properties of refrigerated rainbow trout fillet (Oncorhynchus mykiss). FSCT., 9(37): 67-76. [In Persian]
 [38] Zolfaghari, M., Shabanpour, B., & Fallahzadeh, S. (2011b). Study of trend of chemical and microbial changes of rainbow trout (Oncorhynchus Mykiss) to determine its optimum shhelflife during storage in refrigerator temperature (4°C). J. of Nat. Envir.., 64: 107-119. [In Persian]
 [39] Fan, F. H., Ma, Q., Ge, J., peng, Q.Y., Riley, W., & Tang, S.Z. (2013). Prediction of texture characteristics from extrusion food surface images using a computer vision system and artificial neural networks. J. of Food Eng., 118: 426-433.
 [40] Wu, L., Pu, H., & Sun, D. (2019). Novel Techniques for Evaluating Freshness Quality Attributes of Fish: A Review of Recent Developments. Trends in Food Sci. and Tech., 83: 259-273.
[41] Visessanguan, W., Chutima, T., & Munehika, T. (2005). Effect of frozen storage on chemical and gelforming properties of fish commonly used for surimi production in Thailand. Food Hydrocsfoll., 19(2): 197-207.
[42] Marchal, P. C. Gila, D. M., Garcia, J. G., Ortega, J. G. (2013). Expert system based on computer vision to estimate the content of impurities in olive oil samples. J. of Food Eng., 119(2): 220-228.