[1]Ercisli, S., & Orhan, E. (2008). Some physico-chemical characteristics of black mulberry (Morus nigra L.) genotypes from Northeast Anatolia region of Turkey. Sci. Hortic, 116(1), 41-46.
[2]Suh, H. J., Noh, D. O., Kang, C. S., Kim, J. M., & Lee, S. W. (2003). Thermal kinetics of color degradation of mulberry fruit extract. Food - Nahrung, 47(2), 132-135.
[3Lin, J. Y., & Tang, C. Y. (2007). Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food chem, 101(1), 140-147.
[4] Hertog, M. G., Sweetnam, P. M., Fehily, A. M., Elwood, P. C., & Kromhout, D. (1997). Antioxidant flavonols and ischemic heart disease in a Welsh population of men: the Caerphilly Study. Am J Clin Nutr, 65(5), 1489-1494.
[5] Singhal, B. K., Khan, M. A., Dhar, A., Baqual, F. M., & Bindroo, B. B. (2010). Approaches to industrial exploitation of mulberry (mulberry sp.) fruits. J. Fruit Ornam Plant Res, 18, 83-99.
[6] Arslan, O., Erzengin, M., Sinan, S., & Ozensoy, O. (2004). Purification of mulberry (Morus alba L.) polyphenol oxidase by affinity chromatography and investigation of its kinetic and electrophoretic properties. Food chem, 88(3), 479-484.
[7] Fellows, P. J. (2009). Food processing technology: principles and practice. Elsevier.
[8] Moreira, R., Figueiredo, A., & Sereno, A. (2000). Shrinkage of apple disks during drying by warm air convection and freeze drying. Drying Technol, 18(1-2), 279-294.
[9] Lurie, S., & Nussinovitch, A. (1996). Compression characteristics, firmness, and texture perception of heat treated and unheated apples. j . Food Sci Technol Res, 31(1), 1-5.
[10] Lin, Y. P., Lee, T. Y., Tsen, J. H., & King, V. A. E. (2007). Dehydration of yam slices using FIR-assisted freeze drying. J. Food Eng, 79(4), 1295-1301.
[11] Jun, S., Krishnamurthy, K., Irudayaraj, J., & Demirci, A. (2010). Fundamentals and theory of infrared radiation. Pan, Z., and Atungulu, GG, eds., Infrared heating for food and agricultural processing: Boca Raton, Florida, CRC Press, 1-9.
[12] Aidani, E., Hadadkhodaparast, M., & Kashaninejad, M. (2017). Experimental and modeling investigation of mass transfer during combined infrared‐vacuum drying of Hayward kiwifruits. Food Sci Nutr, 5(3), 596-601.
[13] Wu, J., Zhang, H., & Li, F. (2017). A study on drying models and internal stresses of the rice kernel during infrared drying. Drying Technol, 35(6), 680-688.
[14] Younis, M., Abdelkarim, D., & El-Abdein, A. Z. (2018). Kinetics and mathematical modeling of infrared thin-layer drying of garlic slices. Saudi J. Biol. Sci, 25(2), 332-338.
[15] Orikasa, T., Ono, N., Watanabe, T., Ando, Y., Shiina, T., & Koide, S. (2018). Impact of blanching pretreatment on the drying rate and energy consumption during far-infrared drying of Paprika (Capsicum annuum L.). Food Quality and Safety, 2(2), 97-103.
[16Rad, S. J., Kaveh, M., Sharabiani, V. R., & Taghinezhad, E. (2018). Fuzzy logic, artificial neural network and mathematical model for prediction of white mulberry drying kinetics. Heat Mass Transf, 54(11), 3361-3374.
[17] Jafari, S. M., Ganje, M., Dehnad, D., & Ghanbari, V. (2016). Mathematical, fuzzy logic and artificial neural network modeling techniques to predict drying kinetics of onion. J FOOD PROCESS PRES, 40(2), 329-339.
[18] Bahmani, A., Jafari, S. M., Shahidi, S. A., & Dehnad, D. (2016). Mass transfer kinetics of eggplant during osmotic dehydration by neural networks. J FOOD PROCESS PRES, 40(5), 815-827.
[19] Bahmani, A., Jafari, S. M., Shahidi, S. A., & Dehnad, D. (2016). Mass transfer kinetics of eggplant during osmotic dehydration by neural networks. J FOOD PROCESS PRES, 40(5), 815-827.
[20]Bahramparvar, M., Salehi, F., & Razavi, S. M. (2014). Predicting total acceptance of ice cream using artificial neural network. J FOOD PROCESS PRES, 38(3), 1080-1088.
[21] Salehi, F., Abbasi Shahkoh, Z., & Godarzi, M. (2014). Apricot Osmotic Drying Modeling Using Genetic Algorithm-Artificial Neural Network. Innov Food Sci Technol.
[22] محمدرضا اصغری، رحیم ابراهیمی، بهرام حسین زاده و داود قنبریان. (1396). " مدلسازی پارامترهای کیفی توت سفید در فرآیند خشکشدن با استفاده از شبکه عصبی مصنوعی". مهندسی بیوسیستم ایران، 48:1، 9-18.
[23]Erenturk, S., & Erenturk, K. (2007). Comparison of genetic algorithm and neural network approaches for the drying process of carrot. J. Food Eng, 78(3), 905-912.
[24] Lertworasirikul, S., & Saetan, S. (2010). Artificial neural network modeling of mass transfer during osmotic dehydration of kaffir lime peel. J. Food Eng, 98(2), 214-223.
[25] Salehi, F., & Razavi, S. M. (2016). Modeling of waste brine nanofiltration process using artificial neural network and adaptive neuro-fuzzy inference system. Desalination and Water Treatment, 57(31), 14369-14378.
[26] اسدی امیر آبادی, کاشانی نژاد, صالحی, & فخرالدین. (2017). مدل سازی فرآیند خشک کردن بادمجان توسط سامانه مادون قرمز به روش الگوریتم ژنتیک-شبکه عصبی مصنوعی. نشریه فرآوری و نگهداری مواد غذایی, 9(1), 85-96.
[27] آیدانی, عماد, حدادخداپرست, & کاشانی نژاد. (2017). بررسی خصوصیات کیوی خشک شده با سامانه مادون قرمز و مدلسازی فرآیند. علوم غذایی و تغذیه, 14, 53-66.
[28] Puente-Díaz, L., Ah-Hen, K., Vega-Gálvez, A., Lemus-Mondaca, R., & Scala, K. D. (2013). Combined infrared-convective drying of murta (Ugni molinae Turcz) berries: kinetic modeling and quality assessment. Drying Technol, 31(3), 329-338.