[1] Masi, E., et al., PTR-TOF-MS and HPLC analysis in the characterization of saffron (Crocus sativus L.) from Italy and Iran. Food chemistry, 2016. 192: p. 75-81.
[2] Gresta, F., et al., Analysis of flowering, stigmas yield and qualitative traits of saffron (Crocus sativus L.) as affected by environmental conditions. Scientia horticulturae, 2009. 119(3): p. 320-324.
[3] Mazloumi, M., et al., Comparison of the Effects of Drying Processes: Vacuum Oven, Freeze, Solar and Microwave with Traditional Method on the Qualitative Characteristics of the Iranian Saffron. Pajoohandeh Journal, 2008. 13(3): p. 213-223.
[4] امیدبیگى، ر.. ( 1390 ) تولید و فراورى گیاهان دارویى. جلد سوم. انتشارات آستان قدس رضوی ، ص 1-400.
[5] Husaini, A.M., et al., Saffron (Crocus sativus Kashmirianus) cultivation in Kashmir: Practices and problems. Functional Plant Science and Biotechnology, 2010. 4(2): p. 108-115.
[6] Kumar, D.P., H.U. Hebbar, and M. Ramesh, Suitability of thin layer models for infrared–hot air-drying of onion slices. LWT-Food Science and Technology, 2006. 39(6): p. 700-705.
[7] Mongpraneet, S., T. Abe, and T. Tsurusaki, Accelerated drying of welsh onion by far infrared radiation under vacuum conditions. Journal of Food Engineering, 2002. 55(2): p. 147-156.
[8] Pan, Z. and G.G. Atungulu, Infrared heating for food and agricultural processing. 2010: CRC Press.
[9] Akhondi, E., A. Kazemi, and V. Maghsoodi, Determination of a suitable thin layer drying curve model for saffron (Crocus sativus L) stigmas in an infrared dryer. Scientia Iranica, 2011. 18(6): p. 1397-1401
[10] Nadian, M.H., et al., Improvement of Kiwifruit Drying using Computer Vision System (CVS) and ALM Clustering Method. Drying Technology, 2016(just-accepted)
[11] Salehi, F., Kashaninejad, M., Sadeghi Mahoonak, A., and Ziaiifar, A.M. (2017). Kinetics Modeling of Thin-Layer Drying of Button Mushroom in Combined Infrared-Hot Air Dryer. Journal of Food Science and Technology, 13, 99-109 (in Farsi).
[12] Salehi, F., Kashaninejad, M., and Asadi, A. (2016). Investigation of Mass Transfer Kinetics in Combined Infrared-Hot Air Dryer for Eggplant slices. Food Innovation Technology, 7, 53-60 (in Farsi).
[13] Hosseini Ghaboos, S.H., Seyedian Ardabili, S.M., Kashaninejad, M., Asadi, G., and Alami, M. (2016). Mass transfer kinetics of combined infrared - hot air drying of Pumpkin. Journal of food technology and nutrition, 13, 5-16 (in Farsi).
[14] Taghinezhad, E. and V. Rasooli Sharabiani, The effect of combination dryer of hot air – infrared and microwave on some quality properties of parboiled rice. Innovative Food Technologies, 2017. 5(1): p. 25-38 (in Farsi).
[15] نادیان، ح. (1395). طراحی، ساخت و ارزیابی خشک کن هیبریدی هوای داغ- مادون قرمز برای فرآیند خشک کردن لایه نازک کیوی مبتنی بر ماشین بینایی و منطق فازی. پایان نامه دکتری مهندسی مکانیک بیوسیستم. دانشگاه فردوسی مشهد.
[16] ISO 3632-2, 2010. Saffron (Crocus sativus L.): Test Methods (2003 revised 2010).Switzerland:Geneva, International Standards Organization
[17] استاندارد ملی ایران (شماره5689)، 1388، میکروبیولوژی زعفران-ویژگیها، انتشارات موسسه استاندارد و تحقیقات صنعتی ایران.
[18] Wu, B., et al., Catalytic infrared and hot air dehydration of carrot slices. Journal of Food Process Engineering, 2014. 37(2): p. 111-121
[19] Alaei, B. and R.A. Chayjan, Modelling of nectarine drying under near infrared–Vacuum conditions. Acta Scientiarum Polonorum. Technologia Alimentaria, 2015. 14(1).
[20] Henderson, S.M. (1974). Progress in developing the thin layer drying equation. Transactions of the ASABE., 17, 1167–1172.
[21] Guarte, R.C. (1996). Modelling the drying behaviour of copra and development of a natural convection dryer for production of high quality copra in the Philippines. Ph.D. dissertation, 287. Hohenheim University, Stuttgart, Germany.
[22] Ali Reza, Y., N. Ghasemian, and A. Salari, Infrared drying kinetics study of lime slices using hybrid GMDH-neural networks. Innovative Food Technologies, 2017. 5(1): p. 91-105.
[23] Ertekin, C. and O. Yaldiz, Drying of eggplant and selection of a suitable thin layer drying model. Journal of food engineering, 2004. 63(3): p. 349-359.
[24] Karathanos, V.T. (1999). Determination of water content of dried fruits by drying kinetics. J. Food Eng., 39, 337-344.
[25] Midilli, A., Kucuk, H., Yapar, Z. (2002). A new model for single layer drying. Drying Tech., 20(7), 1503-1513.
[26] Wang, C. Y., and Singh, R. P. (1978). A single layer drying equation for rough rice. ASABE., paper No. 3001.
[27] Verma, L. R., Bucklin, R. A., Endan, J. B., and Wraten, F. T. (1985). Effects of drying air parameters on rice drying models. Transactions of ASAE., 28: 296–301.
[28] Mortezapour, H., et al., Saffron drying with a heat pump–assisted hybrid photovoltaic–thermal solar dryer. Drying Technology, 2012. 30(6): p. 560-566.
[29] Amiri Chayjan, R., Tabatabaei Bahrabad, S.M., Rahimi S.F. (2013). Modeling infrared-covective drying of pistachio nuts under fixed and fluidized bed conditions. J. Food Process. Preserv., pp 12083.
[30] Hebbar, H.U., Vishwanathan, K.H., Ramesh, M.N. (2004). Development of combined infrared and hot air dryer for vegetables. J. Food Eng., 65, 557–563.
[31] Karami, H., M. Rasekh, and Y. Darvishi, Effect of temperature and air velocity on drying kinetics and organo essential oil extraction efficiency in a hybrid dryer. Innovative Food Technologies, 2017. 5(1): p. 65-75. (In Farsi).
[32] Nadian, M.H., et al., Optimal pretreatment determination of kiwifruit drying via online monitoring. Journal of the Science of Food and Agriculture, 2016. 96(14): p. 4785-4796.
[33] Abbasi, S., Minaei, S. and Khoshtaghaza. M. H. (2014). Investigation of kinetics and energy consumption thin layer drying of corn. J. Agri. Machinery. 4(1), 98-107. (In Farsi).
[34] Tolaba, M. and C. Suarez, Simulation of the thin-layer drying of corn by means of the diffusional model. Lebensmittel-Wissenschaft+ Technologie= Food science+ technology, 1988.
[35] Ansari Far, M.H., et al., Investigation of Mazafati Dates Species Drying Kinetics and Effective Moisture Diffusivity under the Cabinet Solar Dryer. Food Science & Technology, 2016. 13(56): p. 125-141.
[36] صفری, م., امیری چایجان، ر. و علائی، ب. (1396) مدل سازی برخی ویژگیهای مغز بادام در خشککن پیوسته نیمهصنعتی. فصلنامه علوم و صنایع غذایی ایران, شماره 65 ،دوره 14، ص 37 - 25.
[37] Carmona, M., et al., Influence of different drying and aging conditions on saffron constituents. Journal of agricultural and food chemistry, 2005. 53(10): p. 3974-3979
[38] آقائی, ز و همکاران. (1396) تأثیر روشهای مختلف خشککردن بر ویژگیهای فیزیکوشیمیایی و حسی زعفران. فصلنامه علوم و صنایع غذایی ایران, شماره 65 ،دوره 14، ص 138 - 129.
[39] Del Campo, C.P., et al., Effects of mild temperature conditions during dehydration procedures on saffron quality parameters. Journal of the Science of Food and Agriculture, 2010. 90(4): p. 719-725.
[40] Gregory, M.J., R.C. Menary, and N.W. Davies, Effect of drying temperature and air flow on the production and retention of secondary metabolites in saffron. Journal of agricultural and food chemistry, 2005. 53(15): p. 5969-5975.
[41] تسلیمی، ا. و همکاران. (1385) مقایسه اثرات فرآیندهای خشک کردن خورشیدی و خلاء با روش سنتی بر ویژگیهای زعفران. فصلنامه علوم و صنایع غذایی ایران, شماره 3 ،دوره 3، ص 17 - 9.
[42] Atefi, M., et al., Effects of Freeze-drying processes on the qualitative characteristics of Iranian saffron. 2004.
[43] Azarpazhooh, E., A. Ehtiati, and P. Sharayei, Modelling the Chemical and Microbial Changes of Saffron Flower during Storage Using Artificial Neural Networks and Genetic Algorithm. Saffron agronomy and technology, 2016. 4(4): p. 279-289