استفاده از بینایی کامپیوتر در تشخیص غیر مخرب تقلبات شیره انگور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی مکانیک بیوسیستم، دانشگاه لرستان

2 دانشجوی کارشناسی ارشد، گروه مهندسی مکانیک بیوسیستم، دانشگاه لرستان

چکیده

انگور یکی از محصولات مهم باغی در دنیا محسوب می‌شود که با توجه به ضایعات بالای این میوه از آن محصولات جانبی مانند شیره تولید می‌گردد. مهمترین فاکتور کیفی برای شیره انگور، مربوط به خالص بودن آن است، که تولیدکنندگان و مصرف کنندگان توجه ویژه‌ای به آن دارند. شیره انگور یکی از محصولات غذایی است که به طور عمده در بازار ایران به دلیل سود اقتصادی مورد تقلب قرار می‌گیرد. توسعه تکنیک‌های مبتنی بر ابزار ساده، ارزان قیمت، مناسب و سریع در صنایع غذایی جهت تشخیص تقلبات از قبیل تقلبات شیره انگور ضروری می‌باشد. در پژوهش حاضر ترکیب پردازش تصویر و روش نزدیک‌ترین همسایگی (KNN) برای ارزیابی سریع و غیر مخرب تشخیص تقلب در شیره انگور بکار رفته است. پس از تهیه تصاویر شیره انگور خالص و تقلبات آن، تصاویر وارد مراحل پیش پردازش و انتقال به فضاهای رنگی RGB، HSI و L*a*b* شدند و در نهایت ویژگی‌های آماری مرتبط با بافت تصاویر از هر یک از کانال های مذکور استخراج گردیدند. به منظور افزایش سرعت و دقت طبقه‌بندی از روش آنالیز مولفه‌های اصلی PCA برای کاهش ابعاد ماتریس ویژگی استفاده گردید. همچنین طبقه‌بندی تصاویر به کمک طبقه‌بند KNN به صورت چهار کلاس انجام شد. سپس شاخص‌های آماری نظیر دقت، صحت، حساسیت، اختصاصی بودن و سطح زیر منحنی به منظور ارزیابی طبقه‌بند محاسبه شدند که مقادیر این شاخص‌ها برای طبقه‌بندی بر اساس داده‌های آزمون به ترتیب برابر با ۲۵/۹۶، ۶۷/۹۱، ۱۹/۹۱، ۷۹/۹۷ و ۴۹/۹۴ درصد می‌باشند. بنابراین نتایج حاصل از این طبقه‌بندی نشان داد که این سیستم قابلیت تشخیص تقلب در شیره انگور خالص به ‌عنوان یک روش هوشمند، سریع، غیرمخرب و دقیق را دارد.

چکیده تصویری

استفاده از بینایی کامپیوتر در تشخیص غیر مخرب تقلبات شیره انگور

تازه های تحقیق

  • از ترکیب پردازش تصویر و روش نزدیک­ترین همسایگی (KNN) برای ارزیابی سریع و غیر مخرب تشخیص تقلب در شیره انگور استفاده گردید.
  • به منظور افزایش سرعت و دقت طبقه­بندی از روش آنالیز مولفه­های اصلی (PCA) برای کاهش ابعاد ماتریس ویژگی استفاده گردید.
  • نتایج نشان می­دهد که روش بینایی کامپیوتر قابلیت تشخیص تقلباب در شیره انگور به­ عنوان یک روش هوشمند، سریع، غیرمخرب و دقیق را دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of computer vision on non-destructive detection of grape syrup adulteration

نویسندگان [English]

  • Amin Taheri-Garavand 1
  • Majid Yousefian 2
1 Assistant Professor, Mechanical Engineering of Biosystems Department, Lorestan University, Khorramabad, Iran
2 MSc Student, Mechanical Engineering of Biosystems Department, Lorestan University, Khorramabad, Iran
چکیده [English]

Grape is one of the most important garden products in the world because of its high waste some by-products like syrup are made from. The most important quality factor for grape syrup depends on its purity, which producers and consumers pay particular attention to. The grape syrup is one of the food products which are adulterated due to economic profit in the Iranian market. The development of simple, low cost, accurate and fast techniques to adulteration detection is essential in the food industry. In this study, the combination of image processing and nearest neighbor method (KNN) has been used for rapid and non - destructive adulteration detection of grape syrup. In this study, image processing combined with k-nearest neighbors are employed to fast and non-destructive adulteration detection of grape syrup. After image acquisition, the images are preprocessed and transformed into the RGB, HSI, and L*a*b* color spaces and finally textural statistical features are extracted from each image channels. In order to reduce the feature matrix dimension and increase the speed and accuracy of classification the principal component analysis (PCA) is applied. KNN is used for classifying image into four classes. Then statistical indexes such as accuracy, precision, sensitivity, specificity, and area under the curve are calculated to evaluate the model that the values of these indexes are obtained 96.25, 91.67, 91.19, 97.79, and 94.49 %, respectively, for test data. Therefore, the results show that this system has the ability to detect adulteration in pure grape syrup as a smart, fast, non-destructive and accurate method.

کلیدواژه‌ها [English]

  • grape syrup
  • adulteration detection
  • image processing
  • principal component analysis (PCA)
  • classifier (KNN)
[1] Dehghanian, S., Mortazavi, A., Nasiri, M., & Ghorbany, M. (2001). Allocation of efficient factors in production of grapes with emphasis on sustainable agriculture in the Khorasan province. J. Agri. Sci. Technol., 15, 143-153.
[2] Aminian, M., & Abedinia, A. R. (2011). Study of possibility of replacement of sugar with grape syrup in the traditional syrup sweetmeat. National Conference on Food Industries, 27-28 February, Quchan, Iran. [In Persian]
[3] Tavakolipour, H., & Kalbasi Ashtari, A. (2013). Determination of rheological properties of grape molasses. J. Nut. Food Sci. Technol., 40(10), 129–137. [In Persian]
[4] MaghamiKia, H., & Ahmadzadeh GhaviDel, R. (2011). A review of processing, nutritional value and applications of grape syrup. National Conference on Food Industries, 27-28 February, Quchan, Iran. [In Persian]
[5] Saghari, V., & Shakouri, Sh. (2013). Investigating the effect of replacing grape syrup with sugar in enriched biscuits. 2th National Conference on Food Industries, 29-30 April, Quchan, Iran. [In Persian]
[6] Batu, A., Arslan, A., & Eroğlu, A. (2014). Effects of black grape syrup on texture, colour and sensory qualities of value added Turkish delight (Lokum). J. Food Sci., 8, 1-8.
[7] Jha, S.N., Jaiswal, P., Grewal, M.K., Gupta, M., & Bhardwaj, R. (2016). Detection of adulterants and contaminants in liquid foods. J. Food Sci., 56, 1662–1684.
[8] Hong, E., Lee, S.Y., Jeong, J.Y., Park, J.M., Kim, B.H., Kwon, K., & Chun, H.S. (2017). Modern analytical methods for the detection of food fraud and adulteration by food category. J. Agri. Sci., 97, 3877–3896.
[9] Azad, T., & Ahmed, S. (2016). Common milk adulteration and their detection techniques. Int. J. Food Contam. 3(22).
[10] Ellis, D.I., Muhamadali, H., Allen, D.P., Elliott, C.T., & Goodacre, R. (2016). A flavour of omics approaches for the detection of food fraud. Curr Opin Food Sci., 10, 7–15.
[11] Ren, J., Deng, T., Huang, W., Chen, Y., & Ge, Y. (2017). A digital PCR method for identifying and quantifying adulteration of meat species in raw and processed food. PLoS One., 12(3): e0173567.
[12] El Darra, N., Rajiha, H.N., Saleh, F., Al-Oweini, R., Maroum, R.G., & Louka, N. (2017). Food fraud detection in commercial pomegranate molasses syrups by UV-VIS spectroscopy, ATR FTIR spectroscopy and HPLC methods. Food Control. 78, 132-137.
[13] Maurer, M.M., Mein, J.R., Chaudhuri, S.K., & Constant, H.L. (2014). An improved UHPLC-UV method for separation and quantification of carotenoids in vegetable crops. Food Chem., 165, 475-482.
[14] Subari, N., Saleh, J.M., Shakaff, A.Y.M., & Zakaria, A. (2012). A hybrid sensing approach for pure and adulterated honey classification. Sensors. 12, 14022-14040.
[15] Jackman, P., Sun, D.W., & Allen, P. (2011). Recent advances in the use of computer vision technology in the quality assessment of fresh meats. Trends Food Sci. Technol., 22(4), 185-197.
[16] Ma, J., Sun, D.W., Qu, J.H., Liu, D., Pu, H., Gao, W.H & Zeng, X.A. (2016). Applications of computer vision for assessing quality of agri-food products: a review of recent research advances. J. Critical Food Sci. Nutr., 56(1), 113-127.
[17] Naderi-Boldaji, M., Mishra, P., Ahmadpour-Samani, M., Ghasemi-Varnamkhasti, M., Ghanbarian, D., & Izadi, Z. (2018). Potential of two dielectric spectroscopy techniques and chemometric analyses for detection of adulteration in grape syrup. Measurement. 127, 518-524.
[18] Mahdiani, M., & Sadr Nia, H. (2010). Grade raisins using image processing: identification cap stem and color.In: Proceedings of the 6th National Congress of Agricultural Machinery and Mechanization, University of Tehran, 14-15 September, Karaj, Iran. [In Persian]
[19] Fatahi, S., Taheri Geravand, A., & Shahbazi, F. (2017). Estimate freshness of chicken meat using image processing and artificial intelligent techniques. Iran J biosys. Eng., 48(4), 491–503. [In Persian]
[20] Yagoobi-Soureh, A., Alizadeh-Khaled Abad, M., & Rezazad Bari, M. (2013). Application of image processing for determination of L*, a*and b*indices in color measurement of foods. J. Food Res., 23(3), 411- 422.
[21] Shi, Z., & He, L. (2010). Application of neural networks in medical image processing. In: Proceedingsof the 2th International Symposium on Networking and Network Security, 2-4 April, Jinggangshan, China.
[22] Kavi Niranjana, K., & Kalpana Devi, M. (2015). RGB to Lab Transformation Using Image Segmentation. Int. J. Advance Res. Computer Sci. Management Stu., 3(11), 8-16.
[23] Zhou, X., Yuan, J., & Liu, H. (2015). A traffic light recognition algorithm based on compressive tracking.  Int. J. Hybrid Info. Technol., 8(6), 323-332.
[24] Chaudhary, P., Chaudhari, A. K., Cheeran, A.N., & Godara, Sh. (2012). Color Transform Based Approach for Disease Spot Detection on Plant Leaf. Int. j. computer sci. tel., 3(6), 65-70.
[25] Shahriar Sazzad, T. M., Islam, S., Mahbubur Rahman Khan Mamun, M. & Zahid Hasan, M.D. (2013). Establishment of an Efficient Color Model from Existing Models for Better Gamma Encoding In Image Processing. Int. J. Image Proces., 7(1), 90-100.
[26] Sangwine, S.J., & Horne, R. E. N. (1998). The Colour Image Processing Handbook. Chapman & Hall, London.
[27] Goñi, S.M., & Salvadori, V.O. (2017). Color measurement: comparison of colorimeter vs. computer vision system. J. Food Measur. Char., 11(2), 538-547.
[28] Gonzalez, R.C., Woods, R.E., & Eddins, S.L. (2004). Digital Image Processing Using MATLAB, Pearson Prentice Hall: New Jersey, USA.
[29] Khulal, U., Zhao, J., Hu, W., & Chen, Q. (2016). Nondestructive quantifying total volatile basic nitrogen (TVB-N) content in chicken using hyperspectral imaging (HSI) technique combined with different data dimension reduction algorithms. Food Chem., 197, 1191–1199.
[30] Oveisi Argane, F., & Erfanian Omidvar, A. (2008). Extracting features using cross-sectional information for classification of brain signals in brain-computer communication systems. The CIS. J. Computer Sci. Eng., 6(3), 60-67.
[31] Labatut, V., & Cheri, H. (2011). Accuracy Measures for the Comparison of Classifiers. The 5th Int. Conf. Infor. Technol., Amman, Jordan.
[32] Ghasemi-Varnamkhasti, M., Mishra, P., Ahmadpour-Samani, M., Naderi-Boldaji, M., Ghanbarian, D., Tohidi, M., & Izadi, Z. (2019). Rapid detection of grape syrup adulteration with an array of metal oxide sensors and chemometrics. J. Eng. Agri, Envir. Food.12 (3) 351–359.
[33] Sheng Whei Miaw, C., Martins Sena, M., De Souza, S.V.C., Pilar Callao, M., & Ruisanchez, I. (2018). Detection of adulterants in grape nectars by attenuated total reflectance Fourier-transform mid-infrared spectroscopy and multivariate classification strategies. Food Chem., 266, 254-261.
[34] Zhu, X., Li, S., Shan, Y., Zhang, Z., Li, G., Su, D., & Liu, F. (2010). Detection of adulterants such as sweeteners materials in honey using near-infrared spectroscopy and chemometrics. J. Food Eng., 101 (1) 92–97.