[1] Massah, J.,F. Hajiheydari.,and M. H. Derafshi., (2017). Application of Electrical Resistance in Nondestructive Postharvest Quality Evaluation of Apple Fruit .Journal of Agricultural Science and Technology., 19: 1031–1039.
[2] Liu, Y.,and Y. Ying., (2007). Noninvasive Method for Internal Quality Evaluation of Pear Fruit Using Fiber-Optic FT-NIR Spectrometry .International Journal of Food Properties., 10: 877–886.
[3] Ganiron, T. U., (2014). Size properties of mangoes using image analysis .International Journal of Bio-Science and Bio-Technology., 6: 31–42.
[4] Pérez-Jiménez, J.,and F. Saura-Calixto., (2015). Macromolecular antioxidants or non-extractable polyphenols in fruit and vegetables: Intake in four European countries .Food Research International., 74: 315–323.
[5] Kolniak-Ostek, J., (2016). Identification and quantification of polyphenolic compounds in ten pear cultivars by UPLC-PDA-Q/TOF-MS .Journal of Food Composition and Analysis., 49: 65–77.
[6] Balogun, W. A.,M. E. Salami.,A. M. Aibinu.,Y. M. Mustafah.,and S. I. B. S., (2014). Mini Review: Artificial Neural Network Application on Fruit and Vegetables Quality Assessment .International Journal of Scientific & Engineering Research., 5: 702–708.
[7] Fathi, M.,M. Mohebbi.,and S. M. A. Razavi., (2011). Application of Image Analysis and Artificial Neural Network to Predict Mass Transfer Kinetics and Color Changes of Osmotically Dehydrated Kiwifruit .Food and Bioprocess Technology., 4: 1357–1366.
[8] Pan, L.,Q. Zhang.,W. Zhang.,Y. Sun.,P. Hu.,and K. Tu., (2016). Detection of cold injury in peaches by hyperspectral reflectance imaging and artificial neural network .Food Chemistry., 192: 134–141.
[9] Mazloumzadeh, S. .,S. . Alavi.,and M. Nouri., (2008). Comparison of Artificial Neural and Wavelet Neural Networks for Prediction of Barley Breakage in Combine Harvester .Journal of Agriculture., 10: 181–195.
[10] Beale, R.,and T. Jackson., (1998). Neural Computing: An Introduction,.
[11] Menhaj, M., (2000). Foundation of Artifitioal Neural Networks.,. Amir Kabir univercity.
[12] Das, S.,A. Routray.,and A. K. Deb., Hyperspectral Unmixing by Nuclear Norm Difference Maximization based Dictionary Pruning .
[13] ERIC JOHNSTON, B. A. S., Design , Optimization , and Testing of a Combined Tri-Axial Polarized Energy Dispersive X-Ray Fluorescence and Energy Dispersive X-Ray Diffraction System for Biological Sample Classification .
[14] Lu, H.,H. Zheng.,H. Lou.,L. Jiang.,Y. Chen.,and S. Fang., (2010). Using neural networks to estimate the losses of ascorbic acid, total phenols, flavonoid, and antioxidant activity in asparagus during thermal treatments .Journal of Agricultural and Food Chemistry., 58: 2995–3001.
[15] Hosu, A.,V. M. Cristea.,and C. Cimpoiu., (2014). Analysis of total phenolic, flavonoids, anthocyanins and tannins content in Romanian red wines: Prediction of antioxidant activities and classification of wines using artificial neural networks .Food Chemistry., 150: 113–118.
[16] Azadbakht, M.,M. Vehedi Torshizi.,H. Aghili.,and A. Ziaratban., (2018). Application of artificial neural network (ann) in drying kinetics analysis for potato cubes .CARPATHIAN JOURNAL OF FOOD SCIENCE AND TECHNOLOGY., 10: 96–106.
[17] Azadbakht, M.,M. Vahedi Torshizi.,and M. J. Mahmoodi., (2018). Determination of pear bruises due to a thin edge compression load by CT scan method .Innovative Food Technologies (JIFT).,.
[18] Diels, E.,M. van Dael.,J. Keresztes.,S. Vanmaercke.,P. Verboven.,B. Nicolai.,W. Saeys.,H. Ramon.,and B. Smeets., (2017). Assessment of bruise volumes in apples using X-ray computed tomography .Postharvest Biology and Technology., 128: 24–32.
[19] Jaramillo-Flores, M. E.,L. González-Cruz.,M. Cornejo-Mazón.,L. Dorantes-álvarez.,G. F. Gutiérrez-López.,and H. Hernández-Sánchez., (2003). Effect of Thermal Treatment on the Antioxidant Activity and Content of Carotenoids and Phenolic Compounds of Cactus Pear Cladodes (Opuntia ficus-indica) .Food Science and Technology International., 9: 271–278.
[20] Li, W. L.,X. H. Li.,X. Fan.,Y. Tang.,and J. Yun., (2012). Response of antioxidant activity and sensory quality in fresh-cut pear as affected by high O2active packaging in comparison with low O2packaging .Food Science and Technology International., 18: 197–205.
[21] Alrajeh, K. M., (2012). Date Fruits Classification using MLP and RBF Neural Networks .International Journal of Computer Applications., 41: 975–8887.
[22] Sandoval, G.,R. A. Vazquez.,P. Garcia.,and J. Ambrosio., (2014). Crop Classification Using Different Color Spaces and RBF Neural Networks. In 598–609.
[23] Soleimanzadeh, B.,L. Hemati.,M. Yolmeh.,and F. Salehi., (2015). GA-ANN and ANFIS models and salmonella enteritidis inactivation by ultrasound .Journal of Food Safety., 35: 220–226.
[24] Salehi, F. 1.,A. Gohari Ardabili.,A. 2 Nemati.,and R. Latifi Darab., (2017). Modeling of strawberry drying process using infrared dryer by genetic algorithm–artificial neural network method .journal Food Science and Technology., 14: 105–114.
[25] Azadbakht, M.,M. V. Torshizi.,and A. Ziaratban., (2016). Application of Artificial Neural Network ( ANN ) in predicting mechanical properties of canola stem under shear loading .Agricultural Engineering International: CIGR Journal., 18: 413–424.
[26] Salehi, F.,and S. M. A. Razavi., (2012). Dynamic modeling of flux and total hydraulic resistance in nanofiltration treatment of regeneration waste brine using artificial neural networks .Desalination and Water Treatment., 41: 95–104.
[27] B. Khoshnevisan, Sh. Rafiee, M. Omid, M. Y., (2013). Prediction of environmental indices of Iran wheat production using artificial neural networks .International Journal of Energy and Environment., 4: 339–348.
[28] Azadbakht, M.,H. Aghili.,A. Ziaratban.,and M. Vehedi Torshizi., (2017). Application of artificial neural network method to exergy and energy analyses of fluidized bed dryer for potato cubes .Energy., 120: 947–958.