[1] Official statistics of agricultural ministry, (2017). Statics of garden crops production at 2017 based on province and product type, page 89. [In Persian].
[2] Prakash, O., & Kumar, A. (2013). Historical review and recent trends in solar drying systems. Int. J. Green Energ., 10(7), 690-738.
[3] Hyson, D. (2011). A comprehensive review of apples and apple components and their relationship to human health. Adv. Nut., 2(5), 408-420.
[4] Bajwa, U., & Sandhu, K.S. (2014). Effect of handling and processing on pesticide residues in food- a review. J. Food Sci. Tech., 51(2), 201-220.
[5] Ikehata, K., & El-Din, M.G. (2006). Aqueous pesticide degradation by hydrogen peroxide/ultraviolet irradiation and Fenton-type advanced oxidation processes: A review. J. Env. Eng. Sci., 5(2), 81-135.
[6] Sharma, D., Nagpal, A., Pakade, Y.B., & Katnoria, J.K. (2010). Analytical methods for estimation of organophosphorus pesticide residues in fruits and vegetables: A review. Talanta, 82(4), 1077-1089.
[7] Claeys, W.L., Schmit, J.F., Bragard, C., Maghuin-Rogister, G., Pussemier, L., & Schiffers, B. (2011). Exposure of several Belgian consumer groups to pesticide residues through fresh fruit and vegetable consumption. Food Cont, 22(3), 508-516.
[8] Keikotlhaile, B.M., Spanoghe, P., & Steurbaut, W. (2010). Effects of food processing on pesticide residues in fruits and vegetables: A meta-analysis approach. Food Chem. Toxicol., 48(1), 1-6.
[9] Zhang, Y., Xiao, Z., Chen, F., Ge, Y., Wu, J., & Hu, X. (2010). Degradation behavior and products of malathion and chlorpyrifos spiked in apple juice by ultrasonic treatment. Ultrasonics Sonochem., 17(1), 72-77.
[10] Zhang, Y., Zhang, W., Liao, X., Zhang, J., Hou, Y., Xiao, Z., Chen, F., & Hua, X. (2010). Degradation of diazinon in apple juice by ultrasonic treatment. Ultrasonics Sonochem., 17(4), 662-668.
[11] Graham, D.M. (1997). Use of ozone for food processing. Food Tech., 51(6), 121-137.
[12] Misra, N.N. (2015). The contribution of non-thermal and advanced oxidation technologies towards dissipation of pesticide residues. Trend. Food Sci. Technol., 45(2), 229-244.
[13] Kusvuran, E., Yildirim, S., Mavruk, F., & Ceyhan, M. (2012). Removal of chloropyrifos ethyl, tetradifon and chlorothalonil pesticide residues from citrus by using ozone. J. Hazard. Mater., 241(2), 287-300.
[14] Lee, Y.G., Koo, J.H., & Kim, J. (2015). Influence of cloud fraction and snow cover to the variation of surface UV radiation at King Sejong station, Antractica. Atmosferic Res., 164(1), 99-109.
[15] Nieto, L.M., Hodaifa, G., & Casanova, M.S. (2009). Elimination of pesticide residues 790 from virgin olive oil by ultraviolet light: preliminary results. J. Hazard. Mater., 168(1), 555-559.
[16] Emam-Djomeh, Z., & Asghari, G. (2006). Using of combined drying method (coating, air drying and microvawe) for drying of apple slices. Iran Agri. Sci. J., 35(3), 777-785. [In Persian]
[17] Moradian, S., Almasi, H., & Moini, S. (2017). Development of bacterial cellulose-based active membranes containing herbal extracts for shelf life extension of button mushrooms (Agaricus bisporus). J. Food Proces. Preserv., 42(3), 211-219.
[18] Noori, S., Zeynali, F., & Almasi, H. (2018). Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Cont., 84(1), 312-320.
[19] Iran National Standard, No. 17026 (2013). Plant based foods-determination of pesticide residues by gas chromatography or liquid chromatography-mass spectroscopy after acetonitrile extraction and dispersive solid phase extraction. Analysis method. [In Persian].
[20] Iran National Standard, No. 13117 (2014). Pesticides- Maximum limit of detection in fruits. [In Persian].
[21] Okyay-Menges, H., & Ertekin, C. (2006). Mathematical modeling of thin layer drying of golden apples. J. Food Eng., 77(1), 119-125.
[22] Iran National Standard, No. 3612 (2005). Characteristics and test methods of dried apple. [In Persian].
[23] Kiani, H., Zardari, M., & Ebrahimi, R. (2017). Investigation of the drying kinetics of dried apple slices after gamma irradiation. Iran Food Sci. and Tech., 14(64), 61-72.
[24] Cui, Z.W., Li, C.W., Song, C.F., & Song, Y. (2008). Combined microwave-vacuum and freeze drying of carrot and apple chips. Dtying Tech., 26(12), 92-104.
[25] Emam-Djomeh, Z., Dehghannya, J., & Sotudeh Gharabagh, R. (2006). Assesment of osmotic process in combination with coating on effective diffusitivities during drying of apple slices. Drying Tech., 24(9), 31-39.
[26] Boulaid, M., Aguilera, A., Camacho, F., Soussi, M., & Valverde, A. (2005). Effect of household processing and unit-to-unit variability of pyrifenox, pyridaben and tralomethrin residues in tomatoes. J. Agric. Food Chem., 53(10), 4054–4058.
[27] Cengiz, M.F., Certel, M., Karakas, B., & Gocmen, H. (2006). Residue contents of DDVP (Dichlorvos) and diazinon applied on cucumbers grown in greenhouses and their reduction by duration of a pre-harvest interval and post-harvest culinary applications. Food Chem., 98(1), 127-135.
[28] Ong, K.C., Cash, J.N., Zabik, M.J., Siddiq, M., & Jones, A.L. (1996). Chlorine and ozone washed for pesticide removal from apples and processed apple sauce. Food Chem., 55(2), 153-160.
[29] Hwang, E.S., Cash, J. N., & Zabik, M. J. (2001). Postharvest treatments for the reduction of mancozeb in fresh apples. J. Agric. Food Chem., 49(6), 3127-3132.
[30] Ikeura, H., Kobayashi, F., & Tamaki, M. (2011). Removal of residual pesticides in vegetables using ozone microbubbles. J Hazard Mater, 186(1), 956-959.
[31] Brodowska, A.G., Nowak, A., & Śmigielski, K. (2017). Ozone in the food industry: principles of ozone treatment, mechanisms of action, and applications. an overview. Crit. Rev. Food Sci. Nut., 58, 2176-2201.
[32] Al Rashidi, M. J., Chakir, A., & Roth, E. (2013). Heterogeneous ozonolysis of folpet and dimethomorph: a kinetic and mechanistic study. J. Phys. Chem. A, 117(13), 2908-2915.
[33] Brun, O. L., Merlet, N., Croue, J. P., & Doré, M. (1993). Phototransformations de composes phytosanitaires en milieu aqueux. Sci. Technol. l’Eau, 26(14), 97-101.
[34] Autin, O., Hart, J., Jarvis, P., MacAdam, J., Parsons, S.A., & Jefferson, B. (2013). The impact of background organic matter and alkalinity on the degradation of the pesticide metaldehyde by two advanced oxidation processes: UV/H2O2 and UV/TiO2. Water Res, 47(6), 2041-2049.
[35] Herzallah, S. (2009). Effect of UV-light and γ-irradiation of apple juice on organochlorinated pesticide residues. Bulletin Facult. Agri. Cairo Univ., 60(2), 206-212.
[36] Lafi, W. K., & Al-Qodah, Z. (2006). Combined advanced oxidation and biological treatment processes for the removal of pesticides from aqueous solutions. J. Hazard. Mater., 137(1), 489- 497.