درون‌پوشانی اسانس باریجه در سیستم نانولیپوزومی و ارزیابی ویژگی‌های فیزیکی و ضدمیکروبی آن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه صنایع غذایی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی، مشهد، ایران

2 دانش آموخته کارشناسی ارشد علوم و صنایع‌غذایی، دانشگاه آزاد اسلامی، قوچان، ایران

3 دانشیار، گروه علوم و صنایع‌غذایی، واحد قوچان، دانشگاه آزاد اسلامی، قوچان، ایران

چکیده

هدف از این پژوهش درونپوشانی اسانس باریجه در سیستم نانولیپوزومی و ارزیابی ویژگیهای فیزیکی و میکروبی آن بود. بر همین اساس نانولیپوزوم‌ها با استفاده از نسبت‌های مشخصی از لسیتین-کلسترول به روش هیدراسیون لایه نازک و امواج فراصوت تولید و ترکیب‌های تشکیل دهنده اسانس با استفاده از روش اسپکتروسکوپی GC-Mass شناسایی گردید. ویژگی­های فیزیکی لیپوزوم­ها نظیر اندازه ذرات، شاخص پراکندگی، پتانسیل زتا و کارایی سیستم درون‌پوشانی مورد بررسی قرار گرفت. ارزیابی ویژگی‌های ضدمیکروبی با دو روش حداقلغلظت بازدارنده رشدو انتشار دیسک بر روی اشریشیا کلی O157:H7  انجام شد. همچنین رشد این باکتری در مجاورت غلظت‌های مختلفی از حداقل غلظت اسانس جهت بازدارندگی رشد در دو حالت آزاد و درون‌پوشانی شده در hr 24 پس از کشت ارزیابی گردید. مهم‌ترین ترکیبات تشکیل دهنده اسانس، بتاپینن (84/60%) و آلفاپینن (14/9%) بودند. میانگین اندازه ذرات لیپوزوم­های حاوی اسانس در محدوده nm 93/99-27/74 بود که تفاوت معنی­داری با نانولیپوزوم فاقد اسانس (nm 76/138) داشت (05/0p<). افزودن کلسترول به لسیتین در غشاء دولایه­ای لیپوزوم باعث افزایش اندازه ذرات و کاهش کارایی درون­پوشانی شد (05/0p<). پایداری الکترواستاتیک لیپوزوم­های فاقد اسانس با افزودن مقادیر مشخصی از کلسترول بهبود یافت، اما پتانسیل زتا در زمانی­که اسانس در لیپوزوم­‌ها جایگزین شد، در نمونه­های دارای کلسترول تغییر معنی­داری پیدا نکرد (05/0p<).  حداقلغلظت بازدارنده رشد اسانس در حالت درون‌پوشانی در سیستم لیپوزومی فاقد کلسترول نسبت به حالت آزاد کمتر بود. این مورد با اندازه­گیری قطر هاله عدم رشد باکتری نیز تأیید شد. نمونه نانولیپوزوم­ حاوی اسانس (دارای mg60  لسیتین) با غلظت 50 و 75% حداقلغلظت بازدارنده رشد، به شکل معنی­داری باعث کاهش رشد باکتری اشریشیا کلی O157:H7 در مقایسه با اسانس آزاد گردید (05/0p<). این تحقیق نشان داد که نانولیپوزوماسانس باریجه با مؤفقیت به‌روش هیدراسیون لایه نازک و امواج فراصوت تولید شد و نمونه فاقد کلسترول در غشاء لیپوزومی اثر ضدمیکروبی بیشتری بر روی اشریشیا کلی نسبت به اسانس آزاد داشت.

چکیده تصویری

درون‌پوشانی اسانس باریجه در سیستم نانولیپوزومی و ارزیابی ویژگی‌های فیزیکی و ضدمیکروبی آن

تازه های تحقیق

    • اسانس باریجه(ferula gummosa) با لیپوزوم درمقیاس نانو درون­پوشانی شد.
    • نانولیپوزوم­ها فعالیت ضدمیکروبی بر علیه باکتری اشریشیا کلی نشان دادند.
    • افزودن کلسترول به لسیتین در غشاء دولایه­ای لیپوزوم باعث افزایش اندازه ذره­ای و کاهش کارایی درون­پوشانی شد.
    • بیشترین فعالیت ضدمیکروبی در نانولیپوزوم­های حاوی 60 میلی­گرم لسیتین و بدون کلسترول مشاهده شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Encapsulation of Barije (ّFerula gummosa) essential oil in nanoliposomal system and evaluation of its physical and antimicrobial properties

نویسندگان [English]

  • Masoud Najaf Najafi 1
  • Anita Arianmehr 2
  • Ali Mohammadi sani 3
1 Associate professor, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad, Iran
2 M.SC. in Food Science &amp; Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
3 Associate Professor, Department of Food Science & Technology, Quchan Branch, Islamic Azad University, Quchan, Iran.
چکیده [English]

The aim of this study was to encapsulate the Barije(Ferula gummosa)essential oil (EO) in liposomal system and evaluate its physical and microbial properties.  Accordingly, nanoliposomes were produced by using specific ratios of lecithin-cholesterol by thin-film hydration-sonication method. Constitutive compounds of essential oil were identified using GC-Mass.  The physical properties of the liposomes, such as particle size, polydispersity index, zeta potential, and the efficiency of encapsulating system, were studied. Evaluation of antimicrobial properties was performed by the two methods of minimum inhibitory concentration (MIC) and disc diffusion test on E. coli O157:H7. Also, the effect of sub-inhibitory concentration of EO (sub-MIC) was evaluated before and after encapsulation against the growth of bacteria over 24 h. The most important constituents of EO were β-pinene (60.84%) and α-pinin (9.14%). The average particle size of EO loaded liposomes was in the range of 74.27 to 99.93 nm, which had a significant difference with the empty nanoliposome (138.76 nm) (p<0.05). Adding cholesterol to lecithin in a double-layered membrane of liposomes increases particle size and reduces the effectiveness of encapsulation (p<0.05). Electrostatic stability of empty liposomes was improved by adding a certain amount of cholesterol, but the zeta potential did not change significantly in cholesterol-based samples when essential oil was replaced in the liposomes (p<0.05). MIC of EO in encapsulating mode was lower in the liposomal system without cholesterol than in free mode.  This was confirmed by measuring the diameter of the bacteria's lack of growth. Nanoliposome specimens containing essential oil (60 mg lecithin) with concentration of 50 and 75% MIC significantly decreased the growth of E. coli O157:H7 compared to free essential oil (p<0.05). This research showed that nano-liposomal essential oil was successfully produced by thin layer and ultrasonic hydration method and the cholesterol-free sample in the liposomal membrane had an antimicrobial effect on E. coli O157:H7 relative to its free essential oil.

کلیدواژه‌ها [English]

  • Barije essential oil
  • nanoliposome
  • antimicrobial effect
  • encapsulation
  • cholesterol
[1] Zabihi A., Akhondzadeh Basti A., Amoabediny G., Khanjari A., Tavakkoly Bazzaz J., Mohammadkhan F., Hajjar Bargh A., Vanaki E. (2017). Physicochemical characteristics of nanoliposome garlic (Allium sativum L.) essential oil and its antibacterial effect on Escherichia coli O157:H7. J. Food Qual. Hazards Control., 4, 24-28.
[2] Espinel-Ingroff A., Fothergill A., Peter J., Rinaldi M., Walsh T. (2002). Testing conditions for determination of minimum fungicidal concentrations of new and established antifungal agents for Aspergillus spp.: NCCLS collaborative study. J. Clin. Microbiol., 40(9), 3204-8.
[3] Ghasemi Y., Faridi P., Mehregan I., Mohagheghzadeh A. (2005). Ferula gummosa fruits: an aromatic antimicrobial agent. Chem. Nat Compd., 41, 311-314.
[4] Jahansooz, F., Ebrahimzadeh, H., Najafi, A.A., Naghavi, M.R., Kouyakhi, E.T., Farzaneh, H. (2008). Composition and antifungal activity of the oil of Ferula gummosa samples from Iran. J. Essent. Oil Bear. Plants.,  3, 284-291.
[5] Sanseverino, A.M., Dasilva, F.M. (2000). Cohalogenation of Limonene, Carvomethene and related unsaturated
monoterpenic alcohols, J Brazilian Chem. Soci., 11, 330- 333.
[6] Sayyah, M., Kamalinejad, M., Bahrami Hidage, R., and Rustaiyan, A. (2001). Antiepileptic Potential and Composition of the Fruit Essential Oil of Ferula Gummosa boiss. Iranian Biomed. J., 5, 69-72.
[7] Eftekhar, F., Yousefzadi, M., Borhani, K. (2004). Antibacterial activity of the essential oil from Ferula gummosa seed. Fitoterapia, 75(7-8), 758-759.
[8] Ebrahimzadeh, M.A., Nabavi, S.M. (2011). Antioxidant activity of hydroalcholic extract of Ferula gummosa ,Boiss roots. Eur Rev. med pharmocal sci., 15(6), 658-64.
[9] Fayaz, F., Rahmati Roodsari, S., Gachkar, L., Pourkaveh, B., Ghasemian Safaei, H. (2011).The antimicrobial activity of Ferula gummosa on bacterial strains isolated from pateints with gastroenteritis. Iran J. clin. infect Dis., 6, 21-24.
[10] Ortan A., Campeanu G., Dinu--Pirv C., Popesco L. (2009). Studies concerning the entrapment of Anethumgraveolens essential oil in liposomes. Rom Biotechnol Lett., 14, 4411–4417.
[11] Samperio C., Boyer R., Eigle W.N., Holland K.W., Mckinney J.S., O’keefe S.F., Smith R., Marcy J.E. (2010). Enhancement of plant essential oils’ aqueous solubility and stability using alpha and beta cyclodextrin. J Agric Food Chem., 58, 12950–12956.
[12] Khatibi S.A., Misaghi A., Moosavy M.H., Akhondzadeh Basti A., Koohi M.K., Khosravi P., Haghirosadat F. (2016). Encapsulation of Zataria Multiflora Bioss. Essential oil into nanoliposomes and in vitro antibacterial activity against Escherishia coli O157:H7. J Food Process Preserv., 41, 1-10.
[13] Valenti D., De Logu A., Loy G., Sinico C., Bonsignore L., Cottiglia F., Garau D., Fadda A.M. (2001). Liposome-incorporation Santolina insularisessential oil: Preparation, characterization and in vitro antiviral activity. J Liposome Res., 11, 73–90.
[14] Detoni C.B., Cabral-Albuquerque E.C.M., Hohlemweger S.V.A., Sampaio C., Barros T.F., Velozo E.S. (2009). Essential oil from Zanthoxylum tingoassuiba loaded into multi lamellar liposomes useful as antimicrobial agents. J. Microencapsulation, 26, 684–691.
[15] فرقانی، س.؛  قره‌نقده، س.؛ صوتی خیابانی ، م.؛  قره‌نقده، س. (1396). بررسی خاصیت ضدمیکروبی عصاره متانولی، اسانس و نانولیپوزوم حاوی اسانس نعناع فلفلی. علوم و صنایع غذایی شماره 68، دوره 14،ص 102-93.
[16] Adams R.P. Identification of Essential Oil Components by Gas Chromatography /Mass Spectroscopy. (1995). Allured Publishing Co. IL.
[18] Kirby C., Gregoriadis G. (1984). Dehydration rehydration vesicles: a simple method for high yield drug entrapment in liposomes. Nat Biotechnol., 2(11), 979-984.
[19] Bouarab, L., Maherani, B., Kheirolomoom, A., Hasan, M., Aliakbarian, B., Linder, M., ArabTehrany, E. (2014). Influence of lecithin–lipid composition on physicochemical properties of nanoliposomes loaded with a hydrophobic molecule. Colloids Surf., B: Biointerfaces, 115, 197-204.
[20] Fatouros, D.G., Antimisiaris, S.G. (2002). Effect of amphiphilic drugs on test ability and zeta-potential of their liposome formulations: a study with prednisolone, diazepam, and griseofulvin. J. Colloid Interface Sci., 251(2), 271-277.
[21] Khatibi S.A., Misaghi A., Moosavy M.H., Akhondzadeh Basti A., Koohi M.K., Khosravi P., Haghirosadat F. (2016). Encapsulation of Zataria Multiflora Bioss. Essential oil into nanoliposomes and in vitro antibacterial activity against Escherishia coli O157:H7. J Food Process Preserv., 41, 1-10.
[22] مرتضایی­نژاد، ف.؛ صادقیان، م.م. (2007). مقایسه ترکیبات فعال باریجه در سه ناحیه کاشان. پژوهش در علوم کشاورزی. شماره 3، ص 172-177.
[23] Nabavi, S.F., Habtemariam, S., Sureda, A., Nabavi, S.M. (2012). Ferula gummosa Boiss as a rich source of natural antioxidants with numerous therapeutic uses. Res. Signpost., 2, 15-26.
[24] Valenti D., De Logu A., Loy G., Sinico C., Bonsignore L., Cottiglia F., Garau D., Fadda A.M. (2001). Liposome-incorporation Santolina insularisessential oil: Preparation, characterization and in vitro antiviral activity. J Liposome Res., 11, 73–90.
[25] Turina A.V., Nolan M.V., Zygadlo J.A., Perillo M.A. (2006). Natural terpenes: Self-assembly and membrane partitioning. Biophys Chem., 122, 101–113.
[26] Malheiros, P.D.S., Sant Anna, V., Barbosa, M.D.S., Brandelli, A., Franco, B.D.G.D.M. (2012).Effect of liposome-encapsulated nisin and bacteriocin-like substance P34 on Listeria monocytogenes growth in Minas frescal cheese. Int. J. Food Microbiol., 156(3), 272-277.
[27] Gopinath, D., Ravi, D., Rao, B., Apte, S., Renuka,D., Rambhau, D. (2004). Ascorbyl palmitate vesicles (Aspasomes): formation, characterization and applications. Int. J. Pharm., 271(1), 95-113.
[28] Jaafar-Maalej C., Diab R., Andrieu V., Elaissari A., Fessi H. (2010). Ethanol injectionmethod for hydrophilic and lipophilic drug-loaded liposome preparation. J Liposome Res., 20, 228–43.
 [29] Fang J.Y., Hong C.T., Chiu W.T., Wang Y.Y. (2001). Effect of liposomes and niosomes on skin permeation of enoxacin. Int. J Pharm., 219,61–72.
[30] Mohammed A.R., Weston N., Coombes A.G., Fitzgerald M., Perrie Y. (2004).Liposome formulation of poorly water soluble drugs: optimisationof drug loading and ESEM analysis of stability. Int. J Pharm., 285, 23–34.
 [31] Ortan A., Campeanu G., Dinu-Pirv C., Popesc L. (2009). Studiesconcerning the entrapment of Anethum graveolens essential oil inliposomes. Rom Biotechnol Lett., 14, 4411–17.
 [32] Gregoriadis G. (2007). Liposome technology, liposome preparation and related techniques, 3rd edn, vol. 1. New York: Informa Healthcare Inc.
 [33] Makino, k., Yamada, T., Kimura, M., Oka, T.,Ohshima, H., and Kondo, T. (1991). Temperature and ionic strength-induced conformational changes in the lipid head group region of liposomes as suggested byzeta potential data. Biophys. Chem., 41, 75-183.
[34] Balouiri, M., Sadiki, M., Ibnsouda, S.K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal., 6, 71-79.
[35]  قره‌نقده، س.؛ صمدلویی، ح.م.؛ صوتی خیابانی،  م.؛ همیشه­کار، ح.؛ رضایی­مکرم، ر. (1396). ارزیابی خواص ضدمیکروبی و آنتی اکسیدانی نانولیپوزوم حاوی اسانس مریم گلی. علوم و صنایع غذایی شماره 62 ، دوره 14، ص 282-271.
[36] Liolios, C.C., Gortzi, O., Lalas, S., Tsaknis, J., Chinou, I. (2009). Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity. Food Chem., 112(1), 77-83.
[37] هاشمی کروئی، س.م.؛ صالحی، م.؛ اصغر حیدری، م.؛ مبینی، م.؛ نصرالهی عمران، آ. (1395). اثر عصاره های آبی و الکلی ریشه باریجه علیه چند سویه پاتوژن باکتریایی. مجله دانشکده علوم پزشکی نیشابور. دوره  4، شماره  3، ص 10-18.
[38] Salehi M, Hashemi Karoui M, Nasrollahi Omran A, Mobini M, Aaghar Heydari M. (2015). Antifungal activity of in vitro aqueous and alcoholic extracts of Barije root (Ferula gummosa). J Birjand Uni Med Sci. 2015;21(4):444-450. [in Persian]
[39] Wu J, Liu H, Ge S, Wang S, Qin Z, Li C, Zheng Q, Liu Q, Zhang Q. (2015). The preparation, characterization, antimicrobial stability and in vitro release evaluation of fish gelatin films incorporated with cinnamon essential oil nanoliposomes. Food Hydrocolloids, 43, 427–435.
[40] Shoji Y, Nakashima H. (2004). Nutraceutics and delivery systems. J Drug Targeting., 12, 385–391.
[41] Sachetelli S, Khalil H, Chen T, Beaulac C, Senechal S, Lagace J. (2000). Demonstration of a fusion mechanism between a fluid bactericidal liposomal formulation and bacterial cells. Biochim. Biophys. Acta., 1463, 254–266.