[1] Zhu, F. (2017). Triticale: Nutritional composition and food uses. Food Chem., 241, 468-479.
[2] Ortiz-Monasterio, J. I., Pena, R. J., Hede, A. H., Pefeiffer, W. H. (2002). Nitrogen and water stress in triticale and durum wheat yield and quality, in: Proceeding of the 5th International Triticale Symposium. Radzikow, Poland, pp 11-26.
[3] خواجه پور، م. ر. (1393) غلات. مرکز نشر دانشگاه صنعتی اصفهان.
[4] مجنون حسینی، ن. (1385). زراعت غلات (گندم، جو، برنج و ذرت). مرکز نشر دانشگاه تهران.
[5] Kweon, M., Slade, L., Levine, H., Gannon, D. (2014). Cookie- versus cracker baking--What’s the difference? Flour functionality requirements explored by SRC and alveography. Crit. Rev. Food Sci. Nutr., 54, 115-138.
[6] Kweon, M., Slade, L., Levine, H. (2011). Solvent retention capacity (SRC) testing of wheat flour: principles and value in predicting flour functionality in different wheat-based food processes and in wheat breeding- A review. Cereal Chem., 88, 537-552.
[7] Slade, L., Levine, H. (1994). Structure-function relationships of cookie and cracker ingredients, in: Faridi, H. (Ed.), The Science of Cookie and Cracker Production, Chapman and Hall, New York, pp 23-141.
[8] AACC International. (2010). Approved Methods of the AACC. St. Paul, Minnesota, USA.
[9] Guzman, C., Romano, G.P., Espinosa, N.H., Dorantes, A.M., Pena, R.G. (2015). A new standard water absorption criteria based on solvent retention capacity (SRC) to determine dough mixing properties, viscoelasticity, and bread-making quality. J. Cereal Sci., 66, 59-65.
[10] Mohsenin, N.N. (1987). Physical Properties of Plant and Animal Materials: Structure, Physical Characteristics and Mechanical Properties. Nahrung., 31, 700-702.
[11] Zheng, C., Sun, D.W., Zheng, L. (2006). Recent developments and applications of Image features for food quality evaluation and inspection. J. Food Sci. Technol., 17, 113-128.
[12] Bayram, M., Öner, M.D., Eren, S. (2004). Effect of cooking time and temperature on the dimensions and crease of the wheat kernel during bulgur production. J Food Eng., 64, 43-51.
[13] Mariotti, M., Alamprese, C., Pagani, M.A., Lucisano, M. (2006). Effect of puffing on ultrastructure and physical characteristics of cereal grains and flours. J. Cereal Sci., 43, 47-56.
[14] Hously, T.L., Kirleis, A.W., Ohm, H.W., Patternson, F.L. (1981). An evaluation of seed growth in soft red winter wheat. Can J Plant Sci., 61, 525- 535.
[15] Sissons, M.J., Osborne, B., Sissons, S. (2006). Application of near infrared reflectance spectroscopy to a durum wheat breeding programme. JNIRS., 14, 17-25.
[16] Bass, E.J. (1988). Wheat flour milling. in: Pomeranz, Y. (Ed.), Wheat Chemistry and Technology, St. Paul, Minnesota, USA, AACC, pp 1-68.
[17] Drakos, A., Malindretou, K., Mandala, I., Evageliou, V. (2017). Protein isolation from jet milled rye flours differing in particle size. FBP., 104, 13-18.
[18] Carter, B.P., Morris, C.F. and Anderson, J.A. (1999). Optimizing the SDS sedimentation test for end-use quality selection in a soft white and club wheat breeding program. Cereal Chem., 76, 907-911.
[19] Williams, P.C., Kuzina, F.D., Hlynka, I. (1970). Rapid colorimetric procedure for estimating the amylose content of starches and flours. Cereal Chem., 47, 411- 421.
[20] Hashimoto, S., Shogren, M., Pomeranz, Y. (1987). Cereal pentosans: Estimation and significance. I. Pentosans in wheat and milled wheat products. Cereal Chem., 64, 30-34.
[21] Pussayanawin, V. and Wetzel, D.L. (1987). High-performance liquid chromatographi determination of ferulic acid in wheat milling fractions as a measure of bran contamination. J. Chromatogr. A., 391, 243-255.
[22] Beveridge, T., Toma, S.J., Nakai, S. (1974). Determination of SH-and SS-groups in some food proteins using Ellman's Reagent. J. Food Sci., 39, 49-51.
[23] Leon, A.E., Rubiolo, A., Anon, M.C. (1996). Use of triticale flours in cookies: Quality factors. Cereal Chem., 73, 779- 784.
[24] Saldivar, S.O., Flores, S.G., Rios, R.V. (2004). Potential of triticale as substitute for wheat in flour tortilla production. Cereal Chem., 81, 220-225.
[25] Roccia, P., Moiraghi, M., Ribotta, P.D., Pérez, G.T., Rubiolo, O.J., León, A.E. (2006). Use of solvent retention capacity profile to predict the quality of triticale flours. Cereal Chem., 83, 243-249.
[26] Igne, B., Gibson, L.R., Rippke G.R., Schwarte, A. Hurburgh-Jr, C.R. (2007). Triticale Moisture and Protein Content Prediction by Near‐Infrared Spectroscopy (NIRS). Cereal Chem., 84, 328-330.
[27] León, A.E., Pérez, G.T., Ribotta, P.D. (2008). Triticale flours: composition, properties and utilization. GSB., 2, 17-24.
[28] Jonnala, R.S., MacRitchie, F., Herald, T.J., Lafiandra, D., Margiotta, B., Tilley, M. (2010). Protein and quality characterization of triticale translocation lines in breadmaking. Cereal Chem., 87, 546-552.
[29] Naik, H.R., Sekhon, K.S., Wani, A.A. (2010). Physicochemical and dough-handling characteristics of Indian wheat and triticale cultivars. Food Sci. Technol., 16, 371-379.
[30] Navarro-Contreras, A.L., Chaires-González, C.F., Rosas-Burgos, E.C., Borboa-Flores, J., Wong-Corral, F. J., Cortez-Rocha, M.O., Cinco-Moroyoqui, F.J. (2014). Comparison of protein and starch content of substituted and complete triticales (× Triticosecale Wittmack): Contribution to functional properties. Int J Food Prop., 17, 421-432.
[31] Frás, A., Gołebiewska, K., Gołebiewski, D., Mankowski, D.R., Boros, D., Szecówka, P. (2016). Variability in the chemical composition of triticale grain, flour and bread. J. Cereal Sci., 71, 66-72.
[32] Aprodu, I., Banu, I. (2016). Comparative analyses of physicochemical and technological properties of triticale, rye and wheat. Food Technol., 40, 31-39.
[33] Oliete, B., Pérez, G.T., Gómez, M., Ribotta, P.D., Moiraghi, M., León, A.E. (2010). Use of wheat, triticale and rye flours in layer cake production. J. Food Sci. Technol., 45, 697-706.
[34] Rakha, A., Saulnier, L., Åman, P., Andersson, R. (2012). Enzymatic fingerprinting of arabinoxylan and glucan in triticale, barley and tritordeum grains. Carbohyd polym., 90, 1226-1234.
[35] Gaines, C.S. (2000). Collaborative study of methods for solvent retention capacity profiles (AACC method 56-11). Cereal Foods World., 45, 303-306.
[36] Guttieri, M.J., Bowen, D., Gannon, D., O’Brien, K., Souza, E. (2001). Solvent retention capacities of irrigated soft white spring wheat flours. Crop Sci., 41, 1054-1061.
[37] Bettge, A.D., Morris, C.F., DeMacon, V.L., Kidwell, K.K. (2002). Adaptation of AACC method 56-11, solvent retention capacity, for use as an early generation selection tool for cultivar development. Cereal Chem., 79, 670-674.
[38] Ram, S., Singh, R.P. (2004). Solvent retention capacities of Indian wheats and their relationship with cookie-making quality. Cereal Chem., 81, 128-133.
[39] Gaines, C.S. (2004). Prediction of sugar-snap cookie diameter using sucrose solvent retention capacity, milling softness, and flour protein content. Cereal Chem., 81, 549-552.
[40] Ram, S., Dawar, V., Singh, R.P., Shoran, J. (2005). Application of solvent retention capacity tests for the prediction of mixing properties of wheat flour. J. Cereal Sci., 42, 261-266.
[41] Gaines, C.S., Reid, J.F., Kant, C.V. Morris, C.F. (2006). Comparison of methods for gluten strength assessment. Cereal Chem., 83, 284-286.
[42] Xiao, Z.S., Park, S.H., Chung, O.K., Caley, M.S., Seib, P.A. (2006). Solvent retention capacity values in relation to hard winter wheat and flour properties and straight-dough breadmaking quality. Cereal Chem., 83, 465-471.
[43] Barrera, G.N., Perez, G.T., Ribotta, P.D., Leon, A.E. (2007). Influence of damaged starch on cookie and bread-making quality. Eur. Food Res. Technol., 225, 1-7.
[44] Nishio, Z., Oikawa, H., Haneda, T., Seki, M., Ito, M., Tabiki, T., Yamauchi, H., Miura, H. (2009). Influence of amylose content on cookie and sponge cake quality and solvent retention capacities in wheat flour. Cereal Chem., 86, 313-318.
[45] Nishio, Z., Miyazaki, Y., Seki, M., Ito, M., Tabiki, T., Nagasawa, K., Yamauchi, H., Miura, H. (2011). Effect of growing environment of soft wheat on amylose content and its relationship with cookie and sponge cake quality and solvent retention capacity. Cereal Chem., 88, 189-194.
[46] Duyvejonck, A.E.,Lagrain, B., Dornez, E.,Delcour, J.A., Courtin, Ch.M. (2012). Suitability of solvent retention capacity tests to assess the cookie and bread making quality of European wheat flours. LWT - Food Sci. Technol., 47, 56-63.
[47] Hrušková, M., Švec, I., Karas, J. (2012). Solvent retention capacity values in relation to the Czech commercial wheat quality. Food Sci. Technol., 47, 2421-2428.
[48] Kaur, A., Singh, N., Kaur, S., Ahlawat. A.K., Singh, A.M. (2014). Relationships of flour solvent retention capacity, secondary structure and rheological properties with the cookie making characteristics of wheat cultivars. Food Chem., 158, 48-55.
[49] Al-Dmoor, H.M., Galali, Y. (2014). Prediction of wheat functionality by assessing dough and bread characteristics. J. Agric. & Environ. Sci., 14, 104-109.
[50] Ali, R., Khan, M.C., Sayeed, S.A., Ahmed, R., Sayeed, S.M.G., Mobin, L. (2014). Relationship of damaged starch with some physicochemical parameters in assessment of wheat flour quality. Pak. J. Bot., 46, 2217-2225.
[51] Hammed, A.M., Ozsisli, B., Ohm, J., Simsek, S. (2015). Relationship between solvent retention capacity and protein molecular weight distribushion, quality characteristics, and breadmaking functionality of hard red spring wheat flour. Cereal Chem., 92, 466-474.
[52] Cao, W., Falk, D., Bock, J.E. (2017). Protein Structural Features in Winter Wheat: Benchmarking Diversity in Ontario Hard and Soft Winter Wheat. Cereal Chem., 94, 199-206.
[53] Mariotti, M., Lucisano, M., Pagani, M.A., Ng, P.K.W. (2016). Effects of dispersing media and heating rates on pasting profiles of wheat and gluten-free samples in relation to their solvent retention capacities and mixing properties. LWT - Food Sci. Technol., 66, 201-210.