[1] Suppakul, P., Miltz, J., Sonneveld, K., Bigger, S. W. (2003). Active packaging technologies with an emphasis on antimicrobial packaging and its applications. J.Food Sci., 68(2), 408-420.
[2] Chen, T.B., Chai, L.T. (2010). Attitude towards the environment and green products: Consumers’ perspective. Manag.Sci.Eng., 4(2), 27-39.
[3] De Abreu, D.P., Losada, P.P., Maroto, J., Cruz, J.M. (2011). Natural antioxidant active packaging film and its effect on lipid damage in frozen blue shark (Prionace glauca). Innov.Food Sci.Emerg.Technol., 12(1), 50-55.
[4] Bodini, R.B., Sobral, P.J.A., Favaro-Trindade, C.S., Carvalho, R.A. (2013). Properties of gelatin-based films with added ethanol–propolis extract. LWT-Food Sci. Technol., 51(1), 104-110.
[5] Bertoft, E. (2004). Analyzing starch structure. In A. C. Eliasson (Ed.),Starch in Food. Structure, function and applications (pp. 57–96). New York: CRC Press.
[6] Krochta, J.M., DeMulder-Johnson, C. (1997). Edible and biodegradable polymer films: challenges and opportunities. Food Technol.,51(2), 61–74.
[7] Ropert, H. (1996). Starch: present use and future utilization. In H. Van Bekkun, H. Ropert, F. Voragen, & A. G. Voragen (Eds.), Carbohydrates as organic raw materials III (pp. 17–35). Weinheim, Germany: Wiley VCH.
[8] Barreto, P.L.M., Pires, A.T.N., Soldi, V. (2003). Thermal degradation of edible films based on milk proteins and gelatin in inert atmosphere. Polym. Deg. Stab., 79(1), 147-152.
[9] Bourtoom, T. (2008). Edible films and coatings: characteristics and properties. Int. Food Res. J., 15(3), 237-248.
[10] Boanini, E., Rubini, K., Panzavolta, S., Bigi, A. (2010). Chemico-physical characterization of gelatin films modified with oxidized alginate. Acta Biomaterialia, 6(2), 383-388.
[11] Baldwin, E.A., Hagenmaier, R., Bai, J. (Eds.). (2011). Edible coatings and films to improve food quality. CRC Press, UK, London, pp. 231-239.
[12] Pereda, M., Ponce, A.G., Marcovich, N.E., Ruseckaite, R.A., &Martucci, J.F. (2011). Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocoll., 25(5), 1372-1381.
[13] Srinivasa, P., Ramesh, M., Kumar, K., Tharanathan, R, (2003). Properties and sorption studies of chitosan–polyvinyl alcohol blend films. Carbohydr. Polym., 53(4), 431-438 .
[14] Kanatt, S.R., Rao, M., Chawla, S., Sharma, A, (2012). Active chitosan–polyvinyl alcohol films with natural extracts. Food Hydrocoll., 29(2), 290-297.
[15] Yang, S.Y.,Huang, C.Y. (2008). Plasma treatment for enhancing mechanical andthermal properties of biodegradable PVA/starch blends. J. Appl. Polym. Sci., 109(4), 2452–2459.
[16] Gupta, B., Agarwal, R., Sarwar Alam, M.S. (2013). Preparation and characterization of polyvinyl alcohol–polyethylene oxide–carboxymethyl cellulose blendmembranes. J. Appl. Polym. Sci., 127(2), 1301–1308.
[17] Silva, F.E.F., Batista, K.A., Di-Medeiros, M.C.B., Silva, C.N.S., Moreira, R.B., Fernandes, K.F. (2016). A stimuli-responsive and bioactive film based on blended polyvinyl alcohol and cashew gum polysaccharide. Mat. Sci. Eng., 58, 927–934.
[18] Shen, Z., Ghasemlu, M., Kamdem, D.P. (2015). Development and compatibility assessment of new composite film based on sugar beet pulp and polyvinyl alcohol intended for packaging applications. J. Appl. Polym. Sci.,132, 41354.
[19] Majdzadeh-Ardakani, K., Nazari, B. (2010). Improving the mechanical properties of thermoplastic starch/poly(vinyl alcohol)/clay nanocomposites. Compos. Sci. Technol., 70(10), 1557-1563.
[20] Paralikar, S.A., Simonsen, J., Lombardi, J. (2008). Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. J. Mem. Sci., 320(1-2), 248-258.
[21] Mascheroni, E., Guillard, V., Nalin, F., Mora, L., & Piergiovanni, L. (2010). Diffusivity of propolis compounds in Polylactic acid polymer for the development of anti-microbial packaging films. J. Food Eng., 98(3), 294-301.
[22] Burdock, G.A. (1998). Review of the biological properties and toxicity of bee propolis. FoodChem.Toxicol., 36,347–363.
[23] Juliano, C., Pala, C.L., Cossu, M. (2007). Preparation and characterisation of polymeric films containing propolis. J. Drug Del. Sci. Technol., 17(3), 177-182.
[24] Mirzoeva, O.K., Grishanin, R.N. Calder, P.C. (1997). Antimicrobial action of propolis and some of its components: the effects ongrowth, membrane potential and motility of bacteria. Microbiol. Res., 152, 239–246.
[25] Kujumgiev, A., Tsvetkova, I., Serkedjieva, Y., Bankova, V., Christov, R., & Popov, S. (1999). Antibacterial, antifungal and antiviral activity of propolis of different geographic origin. J. Ethnopharmacology, 64(3), 235-240.
[26] Koo, H., Gomes, B.P., Rosalen, P.L., Ambrosano, G.M., Park,Y.K. & Cury, J.A. (2000). In vitro antimicrobial activity of propolis and Arnica montana against oral pathogens. Arch. OralBiol., 45, 141–148.
[27] Cabral, I.S.R., Oldoni, T.L.C., Prado, A. et al. (2009). Composicaofenolica, atividade antibacteriana e antioxidante da pr opolis ver- melha brasileira. Quımica Nova, 32, 1523–1527.
[28] Pastor, C., Sánchez-González, L., Cháfer, M., Chiralt, A., & González-Martínez, C. (2010). Physical and antifungal properties of hydroxypropylmethylcellulose based films containing propolis as affected by moisture content. Carbohydr. Polym., 82(4), 1174-1183.
[29] de Araújo, G. K. P., de Souza, S. J., da Silva, M. V., Yamashita, F., Gonçalves, O. H., Leimann, F. V., & Shirai, M. A. (2015). Physical, antimicrobial and antioxidant properties of starch-based film containing ethanolic propolis extract. Int. J. Food Sci. Technol., 50(9), 2080-2087.
[30] Basiak, E., Lenart, A., & Debeaufort, F. (2017). Effect of starch type on the physico-chemical properties of edible films. Int. J. Biol.Macromol., 98, 348-356.
[31] Jouki, M., Yazdi, F. T., Mortazavi, S. A., & Koocheki, A. (2014). Quince seed mucilage films incorporated with oregano essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Food Hydrocoll., 36, 9-19.
[32] ASTM (1995a). Standard test method for tensile properties of thin plasticsheeting. Annual books of ASTM Standards.Designation 882-95, Philadelphia: ASTM, pp.182–188.
[33] ASTM(1995b).Standard test method for water vapor transmission of materials.Annual books of ASTM Standards.Designation E96-95, Philadelphia: ASTM, pp. 785–792.
[34] Angle, M. N., & Dufresne, A. (2000). Plasticized starch/tunicin whiskers nanocomposites. Macromolecules, 33(22), 8344-8353.
[35] Siripatrawan, U., Harte, B.R. (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocoll., 24(8), 770-775.
[36] Bazargani-Gilani, B., Aliakbarlu, J., Tajik, H. (2015). Effect of pomegranate juice dipping and chitosan coating enriched with Zataria multiflora Boiss essential oil on the shelf-life of chicken meat during refrigerated storage. Innov. Food Sci. Emerg. Technol., 29, 280-287.
[37] Dashipour, A., Razavilar, V., Hosseini, H., Shojaee-Aliabadi, S., German, J.B., Ghanati, K., Khaksar, R. (2015). Antioxidant and antimicrobial carboxymethyl cellulose films containing Zataria multiflora essential oil. Int.J. Biol. Macromol., 72, 606-613.
[38] López-Mata, M.A., Ruiz-Cruz, S., Silva-Beltrán, N.P., Ornelas-Paz, J.D.J., Zamudio-Flores, P.B., Burruel-Ibarra, S.E. (2013). Physicochemical, antimicrobial and antioxidant properties of chitosan films incorporated with carvacrol. Molecules, 18(11), 13735-13753.
[39] Choo, K., Ching, Y. C., Chuah, C. H., Julai, S., Liou, N.S. (2016). Preparation and characterization of polyvinyl alcohol-chitosan composite films reinforced with cellulose nanofiber. Materials, 9(8), 644.
[40] Peng, Y., & Li, Y. (2014). Combined effects of two kinds of essential oils on physical, mechanical and structural properties of chitosan films. Food Hydrocoll., 36, 287-293.
[41] Shen, Z., & Kamdem, D. P. (2015). Development and characterization of biodegradable chitosan films containing two essential oils. Int. J. Biol. Macromol., 74, 289-296.
[42] Siripatrawan, U., & Vitchayakitti, W. (2016). Improving functional properties of chitosan films as active food packaging by incorporating with propolis. Food Hydrocoll., 61, 695-702.
[43] Chang-Bravo, L., López-Córdoba, A., Martino, M. (2014). Biopolymeric matrices made of carrageenan and corn starch for the antioxidant extracts delivery of Cuban red propolis and yerba mate. Reac. Func. Polym., 85, 11-19.
[44] Shekarabi, A.S., Oromiehie, A.R., Vaziri, A., Ardjmand, M., Safekordi, A.A. (2014). Investigation of the effect of nanoclay on the properties of quince seed mucilage edible films. Food Sci.Nut., 2(6), 821-827.
[45] Pineros-Hernandez, D., Medina-Jaramillo, C., López-Córdoba, A., Goyanes, S. (2017). Edible cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging. Food Hydrocoll., 63, 488-495.
[46] Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in
foods - A review. Int. J. Food Microbiol, 94(3), 223–253.
[47] Devi, K.P., Nisha, S.A., Sakthivel, R., Pandian, S.K. (2010). Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J.Ethnopharmacology, 130(1), 107-115.
[48] Siripatrawan, U., Vitchayakitti, W., Sanguandeekul, R. (2013). Antioxidant and antimicrobial properties of T hai propolis extracted using ethanol aqueous solution. Int. J. Food Sci. Technol., 48(1), 22-27.
[49] Silici, S., Kutluca, S. (2005). Chemical composition and antibacterial activity of propolis collected by three different races of honeybees in the same region. J. Ethnopharmacology, 99(1), 69-73.
[50] Rice-Evans, C.A., Miller, N.J., Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Rad. Biol. Med., 20(7), 933-956.