[1] Chen, A.C. (1994). Ingredient technology by the sugar cocrystallization process. INT Sugar J. 96, 493-494.
[2] Bhandari, B.R., Datta, N., D'Arcy, B.R., Rintoul, G.B. (1998). Co-crystallization of honey with sucrose. Food Sci Technol-LEB, 31 (2), 138-142.
[3] Chen, A.C., Veiga, M.F., Rizzuto, A.B. (1988). Cocrystallization: An encapsulation process. Food Technol, 42(11), 87.
[4] López-Córdoba, A., Deladino, L., Agudelo-Mesa, L., Martino, M. (2014). Yerba mate antioxidant powders obtained by co-crystallization: Stability during storage. J Food Eng, 124, 158-165.
[5] Awad, A., Chen, A.C. (1993). A new generation of sucrose products made by cocrystallization, Food Technol, 47(1), 145-146.
[6] LaBell, F. (1991). Co-crystallization process aids dispersion and solubility. Food Processing, 52 (8), 60-63.
[7] Astolfi-Filho, Z., Souza, A.C., Reipert, É.C., Telis, V.R. (2005). Encapsulação de suco de maracujá por co-cristalização com sacarose: cinética de cristalização e propriedades físicas. Food Sci Technol-LEB, 25 (4), 795-801.
[8] Beristain, C.I., Vazquez, A., Garcia, H.S., Vernon-Carter, E.J. (1996). Encapsulation of orange peel oil by co-crystallization. Food Sci Technol-LEB, 29 (7), 645-647.
[9] Bhandari, B.R., Hartel, R.W. (2002). Co‐crystallization of Sucrose at High Concentration in the Presence of Glucose and Fructose. J Food Sci, 67(5), 1797-1802.
[10] Deladino, L., Anbinder, P.S., Navarro, A.S., Martino, M.N. (2007). Co-crystallization of yerba mate extract (Ilex paraguariensis) and mineral salts within a sucrose matrix. J Food Eng, 80 (2), 573-580.
[11] Deladino, L., Navarro, A.S., Martino, M.N. (2010). Microstructure of minerals and yerba mate extract co-crystallized with sucrose. J Food Eng, 96 (3), 410-415.
[12] López-Córdoba, A., Gallo, L., Bucalá, V., Martino, M., Navarro, A. (2016). Co-crystallization of zinc sulfate with sucrose: A promissory strategy to render zinc solid dosage forms more palatable. J Food Eng, 170, 100-107.
[13] Maulny, A.P.E., Beckett, S.T., Mackenzie, G. (2005). Physical Properties of Co‐crystalline Sugar and Honey. J Food Sci, 70 (9), 567-572.
[14] Sardar, B.R., Singhal, R.S. (2013). Characterization of co-crystallized sucrose entrapped with cardamom oleoresin. J Food Eng, 117 (4), 521-529.
[15] Boskou, D., Blekas, G., Tsimidou, M. (1996). Olive oil composition. Olive oil: Rubber Chem Technol , 19, 52-83.
[16] Goulas, V., Exarchou, V., Troganis, A.N., Psomiadou, E., Fotsis, T., Briasoulis, E., Gerothanassis, I.P. (2009). Phytochemicals in olive‐leaf extracts and their antiproliferative activity against cancer and endothelial cells. Mol Nutr Food Res, 53 (5), 600-608.
[17] Bulotta, S., Celano, M., Lepore, S.M., Montalcini, T., Pujia, A., Russo, D. (2014). Beneficial effects of the olive oil phenolic components oleuropein and hydroxytyrosol: focus on protection against cardiovascular and metabolic diseases. J Transl. Med, 12 (1), 1-22.
[18] Casaburi, I., Puoci, F., Chimento, A., Sirianni, R., Ruggiero, C., Avena, P., Pezzi, V. (2013). Potential of olive oil phenols as chemopreventive and therapeutic agents against cancer: a review of in vitro studies. Mol Nutr Food Res, 57 (1), 71-83.
[19] Rafiee, Z., Jafari, S.M., Alami, M., Khomeiri, M. (2011). Microwave-assisted extraction of phenolic compounds from olive leaves; a comparison with maceration. J Anim Plant Sci, 21 (4), 738-745.
[20] Rahmanian, N., Jafari, S.M., Galanakis, C.M. (2014). Recovery and removal of phenolic compounds from olive mill wastewater. J Am Oil Chem Soc, 91(1), 1-18.
[21] Kosaraju, S.L., Labbett, D., Emin, M., Konczak, I., Lundin, L. (2008). Delivering polyphenols for healthy ageing. Nutr Diet, 65 (3), 48-52.
[22] Makris, D.P., Rossiter, J.T. (2000). Heat-induced, metal-catalyzed oxidative degradation of quercetin and rutin (quercetin 3-O-rhamnosylglucoside) in aqueous model systems. J Agric Food Chem, 48 (9), 3830-3838.
[23] Wanasundara, P.K J P.D., Shahidi, F. (2005). Antioxidants: science, technology, and applications. Bailey's Industrial Oil and Fat Products. John Wiley & Sons, Inc. 431-489.
[24] Anagnostopoulou, M.A., Kefalas, P., Papageorgiou, V.P., Assimopoulou, A.N., Boskou, D. (2006). Radical scavenging activity of various extracts and fractions of sweet orange peel (Citrus sinensis). Food Chem, 94 (1), 19-25.
[25] AOAC. (2005). Official methods of analysis of the association of official analytical chemists, Vol. II. Arlington, VA: Association of Official Analytical Chemists.
[26] Callahan, J.C., Cleary, G.W., Elefant, M., Kaplan, G., Kensler, T., Nash, R.A. (1982). Equilibrium moisture content of pharmaceutical excipients. Drug Dev Ind Pharm, 8, 355–369.
[27] Goula, A.M., Adamopoulos, K.G. (2005). Spray drying of tomato pulp in dehumidified air: I. The effect on product recovery. J Food Eng, 66 (1), 25-34.
[28] Pordesimo, L.O., Onwulata, C.I., Carvalho, C.W.P. (2009). Food powder delivery through a feeder system: effect of physicochemical properties. Int J Food Prop, 12 (3), 556-570.
[29] Jinapong, N., Suphantharika, M., Jamnong, P. (2008). Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. J Food Eng, 84 (2), 194-205.
[30] Carr, R.L. (1965). Evaluating flow properties of solids. Chem Eng, 1965 , 72 (2),
163-168.
[31] Capannesi, C., Palchetti, I., Mascini, M., Parenti, A. (2000). Electrochemical sensor and biosensor for polyphenols detection in olive oils. Food Chem, 71 (4), 553-562.
[32] Brand-Williams, W., Cuvelier, M. E., Berset, C.L.W.T. (1995). Use of a free radical method to evaluate antioxidant activity. Food Sci Technol-LEB, 28 (1), 25-30.
[33] Zheng, C., Sun, D.W., Zheng, L. (2006). Recent developments and applications of image features for food quality evaluation and inspection–a review. Trends Food Sci Tech, 17(12), 642-655.
[34] Beristain, C.I., Mendoza, R.E., Garcia, H.S., Vazquez, A. (1994). Cocrystallization of jamaica (HibiscussabdarifaL.) granules. Food Sci Technol-LEB, 27(4), 347-349.
[35] Zheng, L., Ding, Z., Zhang, M., Sun, J., (2011). Microencapsulation of bayberry polyphenols by ethyl cellulose: Preparation and characterization. J Food Eng, 104(1), 89-95.
[36] Fennema, O.R., Tannenbaum, S.R. (1996). Introduction to food chemistry. FOOD SCIENCE AND TECHNOLOGY-NEW YORK-MARCEL DEKKER-, 1-16.
[37] Fu, B., Labuza, T.P. (1993). Shelf-life prediction: theory and application. Food Control, 4 (3), 125-133.
[38] Quek, S.Y., Chok, N.K., Swedlund, P. (2007). The physicochemical properties of spray-dried watermelon powders. Chem Eng Process, 46 (5), 386-392.
[39] Newman, A.W., Reutzel‐Edens, S.M., Zografi, G. (2008). Characterization of the “hygroscopic” properties of active pharmaceutical ingredients. J Pharm Sci, 97 (3), 1047-1059.
[40] Schultheiss, N., Newman, A. (2009). Pharmaceutical cocrystals and their physicochemical properties. Cryst. Growth Des, 9(6), 2950-2967.
[41] Abdullah, E.C., Geldart, D. (1999). The use of bulk density measurements as flowability indicators. Powder Technol, 102 (2), 151-165.
[42] Geldart, D., Abdullah, E.C., Hassanpour, A., Nwoke, L.C., Wouters, I. (2006). Characterization of powder flowability using measurement of angle of repose. China Particuology, 4, 104-107.
[43] Santomaso, A., Lazzaro, P., Canu, P. (2003). Powder flowability and density ratios: the impact of granules packing. Chem Eng Sci, 58 (13), 2857-2874.
[44] Barbosa-Canovas, G.V., Malave-Lopez, J., Peleg, M. (1987). Density and compressibility of selected food powders mixture. J Food Process Eng, 10 (1), 1-19.
[45] Peleg, M. (1977). Flowability of food powders and mthods for its evaluation—a review. J Food Process Eng, 1 (4), 303-328.
[46] Teunou, E., Vasseur, J., Krawczyk, M. (1995). Measurement and interpretation of bulk solids angle of repose for industrial process design. Powder Handl Process, 7 (3), 219-228.
[47] Juliano, P., Barbosa-Cánovas, G.V. (2010). Food powders flowability characterization: theory, methods, and applications. Annu Rev Food Sci Technol, 1, 211-239.
[48] Lumay, G., Boschini, F., Traina, K., Bontempi, S., Remy, J.C., Cloots, R., Vandewalle, N. (2012). Measuring the flowing properties of powders and grains. Powder Technol, 224, 19-27.
[49] USP 30-NF 25, United States Pharmacopeia-National Formulary, Rockville, MD, 2007.
[50] Ersus, S., Yurdagel, U. (2007). Microencapsulation of anthocyanin pigments of black carrot (Daucus carota L.) by spray drier. J Food Eng, 80, 805-812.
[51] Moyer, R.A., Hummer, K.E., Finn, C.E., Frei, B., Wrolstad, R.E. (2002). Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes. J Agric Food Chem, 50 (3), 519-525.
[52] Muzaffar, K., Wani, S.A., Dinkarrao, B.V., Kumar, P. (2016). Determination of production efficiency, color, glass transition, and sticky point temperature of spray-dried pomegranate juice powder. Cogent Food Agric, 2 (1), 114-120.
[53] Tuyen, C.K., Nguyen, M.H., Roach, P.D. (2010). Effects of spray drying conditions on the physicochemical and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder. J Food Eng, 98 (3), 385-392.