مدل سازی و بهینه سازی پارامترهای فرایندی در تهیه نانو کپسول از عصاره پلی فنلی حاصل از پسماند صنعتی سیب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، پژوهشکده فناوریهای شیمیایی، سازمان پژوهش های علمی و صنعتی ایران

2 دانش آموخته کارشناسی ارشد، پژوهشکده فناوری های شیمیایی، سازمان پژوهش های علمی و صنعتی ایران

چکیده

تتحقیق حاضر در زمینه مدل سازی و بهینه سازی پارامترهای فرایندی با روش سطح پاسخ ( RSM) در نانو کپسوله کردن عصاره پلی فنلی حاصل از ضایعات صنعتی سیب با استفاده از مالتودکسترین است. از روش جایگزینی حلال برای نانو کپسول کردن استفاده شده است. متغیرهای مستقل نسبت هسته به پوسته، درصد وزنی سورفکتانت، زمان همگن سازی و متغیر وابسته (پاسخ) درصد مهار رادیکالهای آزاد توسط پلی فنل باقی مانده (بیان شده بر حسب DPPH%) هستند. نتایج تحلیل واریانس نشانگر تاثیر گزار بودن متغیرهای مستقل بر متغیر پاسخ در سطح اطمینان 95% ، ( P < 0.05) است. در بین متغیرهای تحت بررسی ، نسبت هسته به پوسته و درصد وزنی سورفاکتانت بیشترین تاثیر را در پاسخ داشته اند. ضریب همبستگی (92/0) و تطابق مناسب بین داده های تجربی با مقادیر پیش بینی شده توسط مدل، نشانگر انتخاب مناسب متغیرهای مستقل و بازه های آنها می باشد. شرایط بهینه عبارتند از : نسبت پوسته به هسته (5/5)، درصد سورفکتانت ( % w/v5)، و زمان همگن سازی ( min 2). در شرایط بهینه دامنه اندازه ذرات (اندازه‌گیری شده توسط DLS و SEM) در گستره nm 70-50 و میزان بارگیری پلی فنلها حدود 98% بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling and Optimization of process conditions in nanoencapsulation of the polyphenolic extract of industrial apple pomace

نویسندگان [English]

  • Shohreh Saffarzadeh-Matin 1
  • Majid Shahbazi 2
1 Assistant Professor, Chemistry, Department of Chemical Technologies, Iranian Research Organization for Science and Technology
2 MSc, Nanochemistry, Department of Chemical Technology, Iranian Research Organization for Science and Technology
چکیده [English]

 In present study, the process conditions for nanoencapsulation of rich polyphenolic extract of apple pomace by solvent displacement method were optimized using response surface methodology (RSM). The independent variables were expressed as wall to core ratio, surfactant w/w% and ultrasonic mixing time (min). The response (or dependent variable) was the antioxidant activity of polyphenols still remained in supernatant after nanocapsuls isolation (expressed as DPPH %), which was also optimized. The optimum conditions were: the wall to the core ratio (5.5), the percentage of the surfactant (5 %w/v), and homogenization time (2 min). The analysis of variance for response showed that relatively all independent variables are significant (p< 0.05) at the 95% confidence level. The results indicated that the shell to core (X1) followed by the percentage of surfactant (X2) are the significant factors affecting the response. In addition the coefficients of the determinations (R2 =0.922) and the good agreements between the predicted values with the experimental values for dependent variable, were another indication that the model adequately fit the chosen parameters in their ranges. In optimal condition, the particle size (measured by DLS and SEM) was in the range of 50-70 nm and polyphenol loading efficiency was about 98%.

کلیدواژه‌ها [English]

  • Nanoencapsulation
  • Optimization
  • solvent displacement
  • polyphenolic extract
  • apple pomace
  • Response Surface Methodology (RSM)
[1] Boyer, J., Liu, R.H. (2004). Apple phytochemicals and their health benefits. Nutr. J., 3(1), 1–15.
[2] Dabrosca, B., Pacifico, S., Cefarelli, G., Mastellone, C., Fiorentino, A. (2007). “Limoncella” apple, an Italian apple cultivar: Phenolic and flavonoid contents and antioxidant activity. Food Chem., 104(4), 1333–1337.
[3] Diñeiro García, Y., Valles, B.S., Picinelli Lobo, A. (2009). Phenolic and antioxidant composition of by-products from the cider industry: Apple pomace. Food Chem., 117(4), 731–738.
[4] Drogoudi, P.D., Michailidis, Z., Pantelidis, G. (2008). Peel and flesh antioxidant content and harvest quality characteristics of seven apple cultivars. Sci. Hort., 115(2), 149–153..
[5] Eberhardt, M., Lee, C.,  Liu, R.H. (2000). Antioxidant activity of fresh apples. Nature, 405, 903-904.
 [6] Aprikian, O., Levrat-Verny, M., Besson, C., Busserolles, J., Remesy, C., Demigne, C. (2001). Apple favourably affects parameters of cholesterol metabolism and of anti-oxidative protection in cholesterol fed rats. Food. Chem., 75, 445-452.
 [7] O Aprikian, O., Busserolles, J., Manach, C., Mazur, A., Morand, C., Davicco, M., Demigne, C. (2002). Lyophilized apple counteracts the development of hypercholesterolemia, oxidative stress, and renal dysfunction in obese Zucker rats. J. Nutr., 132, 1969-1976.
 [8] Lapidot, T., Walker, M., Kanner, J. (2002). Can apple antioxidants inhibit tumor cell proliferation? generation of H2O2 during interaction of phenolic compounds with cell culture media. J. Agric. Food Chem., 50, 3156–3160.
[9] Pearson, D., Tan, C., German, B., Davis, P., Gershwin, M. (1999). Apple juice inhibits human low density lipoprotein oxidation. Life Sci., 64, 1913-1920.
[10]   Saito, T., Miyake, M., Toba, M., Okamatsu, H., Shimizu, S., Noda, M. (2002). Inhibition by apple polyphenols of ADP-ribotransferase activity of cholera toxin and toxin-induced fluid accumulation in mice. Microbiol. Immunol., 46, 249-255.
[11]   Wolfe, K., Liu, R.H. (2003). Apple peels as a value-added food ingredient. J. Agric. Food. Chem., 51, 1676-1683
 [12] Mora-huertas, C.E., Fessi, H., Elaissari, A. (2010). Polymer-based nanocapsules for drug delivery. Int. J. Pharm., 385, 113–142
[13]   Fang, Z., Bhandari, B. (2010). Encapsulation of polyphenols - A review. Trends Food Sci. Technol., 21, 510-523.
 [14] Laroui, H., Wilson, D.S., Dalmasso, G., Salaita, K., Murthy, N., Sitaraman, S.V, Merlin, D. (2011). Nanomedicine in GI. Am. J. Physiol. Gastrointest. Liver Physiol., 300, G371–G383.
[15] Fathi, M., Mozafari, M., Mohebbi, M. (2012). Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci. Technol., 23(1),  13–27.
[16]   Altunbas, A., Lee, S.J., Rajasekaran, S.A., Schneider, J.P., Pochan, D. J. (2011). Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials, 32(25), 5906–5914.
[17] Souguir, H., Salaün, F., Douillet, P., Vroman, I., Chatterjee, S. (2013). Nanoencapsulation of curcumin in polyurethane and polyurea shells by an emulsion diffusion method. Chem. Eng. J., 221, 133–145.
[18] Anand, P., Nair, H.B., Sung, B., Kunnumakkara, A.B., Yadav, V.R., Tekmal, R.R., Aggarwal, B.B. (2010). Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem. Pharmacol., 79(3), 330–338.
[19] Pandey, S. K., Patel, D.K., Thakur, R., Mishra, D.P., Maiti, P., Haldar, C. (2015). Anti-cancer evaluation of quercetin embedded PLA nanoparticles synthesized by emulsified nanoprecipitation. Int. J. Biol. Macromolec., 75, 521–529.
[20] Wu, T., Yen, F., Lin, L., Tsai, T., Lin, C., Cham, T. (2008). Preparation, physicochemical characterization, and antioxidant effects of quercetin nanoparticles. Int. J. Pharm., 346, 160–168.
[21]   Barras, A., Mezzetti, A., Richard, A., Lazzaroni, S., Roux, S., Melnyk, P., Monfilliette-Dupont, N. (2009). Formulation and characterization of polyphenol-loaded lipid nanocapsules. Int. J. Biol. Macromolec., 379(2), 270–277.
 [22] Shirode, A.B., Bharali, D.J., Nallanthighal, S., Coon, J.K., Mousa, S.A., Reliene, R. (2015). Nanoencapsulation of pomegranate bioactive compounds for breast cancer chemoprevention. Int. J. Nanomedicine, 10, 475–484.
[23] Bala, I., Bhardwaj, V., Hariharan, S., Kharade, S.V, Roy, N., Ravi Kumar, M.N.V. (2006). Sustained release nanoparticulate formulation containing antioxidant-ellagic acid as potential prophylaxis system for oral administration. J. Drug Target., 14, 27–34.
[24] Palafox-Carlos, H., Gil-Chávez, J., Sotelo-Mundo, R.  (2012). Antioxidant interactions between major phenolic compounds found in ‘Ataulfo’mango pulp: chlorogenic, gallic, protocatechuic and vanillic acids, Molecules, 17(11), 4, 12657–1266.
 [25] آمار محصولات باغی سال 92 ،پورتال وزارت جهاد کشاورزی (معاونت برنامه ریزی و اقتصادی ، مرکز قناوری اطلاعات و ارتباطات).
[27] موسسه برنامه ریزی و اقتصاد کشاورزی، تولید 3/4 درصد سیب درختی جهان در ایران، 1394
[28] Leardi, R., (2009). Experimental design in chemistry: A tutorial,  Anal. Chim. Acta, 652, 1, 161–172.
[29] Pinelo, M., Rubilar, M., Jerez, M., Sineiro, J., Núñez, M.J.(2005). Effect of Solvent, Temperature, and Solvent-to-Solid Ratio on the Total Phenolic Content and Antiradical Activity of Extracts from Different Components of Grape Pomace,  J. Agric. Food Chem., 53(6), 2111–2117.
[30] Morelli,  L.L.L., Prado, M.A. ( 2012). Extraction optimization for antioxidant phenolic compounds in red grape jam using ultrasound with a response surface methodology,” Ultrason. Sonochem., 19(6), 1144–1149.
[31]  ولی پور، م. (1395) استخراج تک مرحله ای و چند مرحله‌ای با جریان متقابل ترکیبات پلی‌فنلی از ضایعات صنعتی سیب و بهینه‌سازی فرایندها، پایان‌نامه کارشناسی ارشد شیمی آلی، سازمان پژوهش‌های علمی و صنعتی ایران، پژوهشکده فناوری‌های شیمیایی. 
[32] Poletto, F.S., Jäger, E., Cruz, L., Pohlmann, A.R., Guterres, S.S. (2008). The effect of polymeric wall on the permeability of drug-loaded nanocapsules, Mater. Sci. Eng. C, 28(4), 472–478.
[33] Mora-Huertas, C.E., Fessi, H., Elaissari, A. (2011) Influence of process and formulation parameters on the formation of submicron particles by solvent displacement and emulsification–diffusion methods: Critical comparison, Adv. Colloid Interface Sci., 163(2), 90–122.
[34] Miladi, K., Sfar, S., Fessi, H., Elaissari, A. (2015). Encapsulation of alendronate sodium by nanoprecipitation and double emulsion: From preparation to in vitro studies,” Ind. Crops Prod., 72, 24–33.
[35] Bilat, U., Allémann, E., Doelker, E., (2005). Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles,  Eur. J. Pharm. Sci., 24(1), 67–75.