[1] Román-Camacho, JJ., García-García, I., Santos-Dueñas, IM., García-Martínez, T., & Mauricio, JC. (2023). Latest trends in industrial vinegar production and the role of acetic acid bacteria: classification, metabolism, and applications—a comprehensive review. Foods, 12(19), 3705.
[2] Luzón-Quintana, LM., Castro, R., Durán-Guerrero, E. (2021). Biotechnological processes in fruit vinegar production. Foods,10(5), 945.
[3] Shahi, T JS., Pouyan, M., Ebrahimi, M., Hosseini, S., Raghara, H., et al. (2022). Comparison of physicochemical and antioxidant properties of traditional jujube, apple, and grape vinegars with industrial apple vinegar. Iran. J. Food Sci. Technol., 18(121), 173.
[4] Liu Q, Tang G-Y, Zhao C-N, Gan R-Y, & Li H-B. (2019). Antioxidant activities, phenolic profiles, and organic acid contents of fruit vinegars. Antioxidants, 8(4),78.
[5] Perumpuli, P., Dilrukshi, D., Vinegar, A. (2022) functional ingredient for human health. Int. Food Res. J., 29(5), 959–74.
[6] Chen, G-L., Zheng, F-J., Lin, B., Yang, Y-X., Fang, X-C., Verma, KK., et al. (2023). Vinegar: A potential source of healthy and functional food with special reference to sugarcane vinegar. Front. Nutr.,10, 1145862.
[7]Wagner, M., Heredia, JZ., Montemerlo, A., Ortiz, D., Camiña, JM., Garrido, M., et al. (2024). Multiparametric analysis and authentication of Argentinian vinegars from spectral sources. J. Food Compos. Anal., 125, 105801.
[8]Cavdaroglu, C., & Ozen, B. (2023). Applications of UV–visible, fluorescence and mid-infrared spectroscopic methods combined with chemometrics for the authentication of apple vinegar.
Foods, 12(6), 1139.
https://doi.org/10.3390/foods12061139.
[10] Cavdaroglu, C., & Ozen, B. (2022). Detection of vinegar adulteration with spirit vinegar and acetic acid using UV–visible and fourier transform infrared spectroscopy. Food Chem., 379, 132150.
[11] ISIRI 1394. Spice and Condiments— Vinegar — Test Methods. Iran National Standards Organization. 3th Revision 2022. file:///C:/Users/f.hashempour/Downloads/1394.pdf.
[12] Teimorimanesh, M., & Abbasi, H. (2022). Optimization of ammonium phosphate, potassium sulfate and Saccharomyces cerevisiae in the production of acetic acid in a batch fermentor using response surface methodology. Iran. Food Sci. Technol. Res. J., 18(4), 397-413.
[13] Singelton, V., & Rossi, J. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 16(3), 144–58.
[14]. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Bio. Med. https://doi.org/10.1016/S0891-5849(98)00315-3
[15] Calle, JLP., Ferreiro-González, M., Ruiz-Rodríguez, A., Barbero, GF., Álvarez, JÁ., Palma, M., et al. (2021). A methodology based on FT-IR data combined with random forest model to generate spectralprints for the characterization of high-quality vinegars. Foods, 10(6),1411.
[16] Hajimahmoodi, M., Khanavi, M., Sadeghpour, O., Ardekani, MRS., Mazde, FZ., Khoddami, MS., et al. (2016). Application of organic acid based artificial neural network modeling for assessment of commercial vinegar authenticity. Food Anal. Methods, 9(12), 3451–9.
[17] Hashemi, M., Salehi, T., Aminzare, M., Raeisi, M., & Afshari, A. (2017). Contamination of toxic heavy metals in various foods in Iran: a review. J. Pharm. Sci. Res., 9(10),1692–7.
[19] Cosmulescu, S., Stoenescu, A-M., Trandafir, I., & Tuțulescu, F. (2022). Comparison of chemical properties between traditional and commercial vinegar.
Horticulturae, 8(3), 225.
https://doi.org/10.3390/horticulturae8030225
[20] Qi, Z., Yang, H., Xia, X., Wang, W., & Yu, X. (2014). High strength vinegar fermentation by Acetobacter pasteurianus via enhancing alcohol respiratory chain.
Biotechnol. Bioprocess Eng., 19(2),289–9,
https://doi.org/10.1007/s12257-013-0727-0
[21] Ho, CW., Lazim, AM., Fazry, S., Zaki, UKHH., Lim, SJ. (2017). Varieties, production, composition and health benefits of vinegars: A review.
Food Chem., 221, 1621–30.
https://doi.org/10.1016/j.foodchem.2016.10.128
[22] Ousaaid, D., Mechchate, H., Laaroussi, H., Hano, C., Bakour, M., El Ghouizi, A., et al. (2021). Fruits vinegar: Quality characteristics, phytochemistry, and functionality.
Molecules, 27(1), 222.
https://doi.org/10.3390/molecules27010222.
[23] Yildiz E. (2023). Characterization of fruit vinegars via bioactive and organic acid profile using chemometrics. Foods, 12(20), 3769.
[24] Antoniewicz, J., Kochman, J., Jakubczyk, K., & Janda-Milczarek, K. (2021). The influence of time and storage conditions on the antioxidant potential and total phenolic content in homemade grape vinegars. Molecules, 26(24), 7616.
[25] Bakir, S., Devecioglu, D., Kayacan, S., Toydemir, G., Karbancioglu-Guler, F., Capanoglu, E. (2017). Investigating the antioxidant and antimicrobial activities of different vinegars. Eur. Food Res. Technol., 243(12), 2083–94.
[26] Mohamed, SH., Salim, AI., Issa, YM., & Ali, AE. (2021). Detection and identification of adulteration in vinegar samples based on reversed-phase high-performance liquid chromatographic (RP-HPLC) strategies. ACS Food Sci. Technol., 2(1), 21–30.
[27] Kadiroğlu, P. (2018). FTIR spectroscopy for prediction of quality parameters and antimicrobial activity of commercial vinegars with chemometrics. J. Sci. Food Agric., 98(11), 4121–7.
[28] Shao, L., Zhao, X., Cai, W., Zhang, Q., & Shan, C. (2025). Changes in nutrient composition, antioxidant capacity, phenolics, and volatile organic compounds in black mulberry vinegar across different fermentation stages. Food Bios., 66,106222.
[29] Karavoltsos, S., Sakellari, A., Sinanoglou, VJ., Zoumpoulakis, P., Plavšić, M., Dassenakis, M., et al. (2020). Copper complexing capacity and trace metal content in common and balsamic vinegars: impact of organic matter. Molecules, 25(4), 861.
[30] Judith, OO., Ezemba, AS., Ajeh, JE., Chude, CO., & Ezemba, CC. (2021). Evaluation of the proximate and elemental composition of traditional and industrial produced vinegar. Int. J. Innov. Res. Dev.,10(5).
[31] Antoniewicz, J., Jakubczyk, K., Kupnicka, P., Bosiacki, M., Chlubek, D., Janda, K. (2022). Analysis of selected minerals in homemade grape vinegars obtained by spontaneous fermentation. Biol. Trace Elem. Res., 200, 910-919.