اصالت سنجی سرکه با اتکا بر شاخص‌های فنولی، آنتی‌اکسیدانی و طیف‌سنجیFTIR: مقایسه سرکه تخمیری، تقطیری و استیک اسید صنعتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مرکز تحقیقات حلال جمهوری اسلامی ایران، سازمان غذا و دارو، وزارت بهداشت درمان، آموزش پزشکی تهران، ایران

2 استادیار دانشکده علوم پایه دانشگاه پیام نور صندوق پستی 4697-19395،تهران ،ایران

3 گروه علوم و صنایع غذایی، واحد شهرقدس، دانشگاه آزاد اسلامی، شهرقدس، ایران

چکیده

سرکه به‌عنوان یک چاشنی عملکردی با خواص تغذیه‌ای و درمانی، امروزه با چالش افزایش تقلب به‌ویژه استفاده از اسید استیک صنعتی مواجه است. هدف از این پژوهش، ارزیابی اصالت سرکه و مقایسه ویژگی‌های تغذیه‌ای، زیستی و ایمنی سرکه‌های تخمیری و تقطیری در مقایسه با سرکه پایه مصنوعی است. در این مطالعه ۱۵ نمونه تجاری مورد ارزیابی قرار گرفتند و شاخص‌هایی شامل اسیدیته کل، ارزش اکسیداسیون، فعالیت آنتی‌اکسیدانی(روشABTS)، میزان ترکیبات فنولی، اسیدهای آلی (توسطHPLC)، عناصر کم‌مقدار (با جذب اتمی) و گروه‌های عاملی (با استفاده از FTIR ) اندازه‌گیری و نتایج با آزمون واریانس و دانکن در سطح معنی‌داری ۰۵/۰ مقایسه شد.

نتایج نشان داد سرکه‌های تخمیری دارای بیشترین میزان ترکیبات فنولی (96/73 میلی‌گرم بر لیتر گالیک اسید)، بالاترین فعالیت آنتی‌اکسیدانی (۰۵۱/۷۵ درصد مهارABTS) و بیشترین ارزش اکسیداسیون بودند(05/0>p). طیف‌سنجی FT-IR حضور ترکیبات زیست‌فعال و گروه‌های عاملی مرتبط با تخمیر طبیعی را تأیید کرد. همچنین، تنها در سرکه‌های تخمیری اسیدهای آلی طبیعی مانند مالیک، سیتریک و فوماریک شناسایی شد، در حالی‌که سرکه‌های تقطیری و اسید استیک صنعتی تنها حاوی استیک اسید بودند. ارزیابی عناصر نشان داد که سرکه‌های تخمیری از نظر فلزات سنگین ایمن‌تر بوده و دارای منیزیم بالاتر به‌عنوان یک ماده معدنی ضروری بودند. استیک اسید صنعتی دارای بیشترین غلظت سرب و نیکل بود (05/0>p) که ممکن است ناشی از استفاده از کاتالیست‌های صنعتی باشد. به‌طور کلی، یافته‌ها بر برتری سرکه‌های تخمیری از نظر ارزش تغذیه‌ای، خواص عملکردی و ایمنی غذایی تأکید دارند و نشان می‌دهند ترکیب چند شاخص شیمیایی و طیفی رویکردی مؤثر برای تشخیص اصالت و شناسایی تقلب در سرکه است. این نتایج اهمیت توسعه سرکه‌های تخمیری طبیعی را به‌عنوان یک غذای عملکردی با نقش بالقوه در ارتقای سلامت انسان برجسته می‌کند.

چکیده تصویری

اصالت سنجی سرکه با اتکا بر شاخص‌های فنولی، آنتی‌اکسیدانی و طیف‌سنجیFTIR: مقایسه سرکه تخمیری، تقطیری و استیک اسید صنعتی

تازه های تحقیق

  • این پژوهش با ترکیب شاخص‌های فنولی، آنتی‌اکسیدانی، FTIR و اسیدهای آلی، رویکردی چندشاخصه برای اصالت‌سنجی سرکه ارائه داد.
  • نتایج نشان داد سرکه تخمیری دارای بالاترین ترکیبات زیست‌فعال و اسیدهای آلی طبیعی بوده و به‌طور واضح از سرکه تقطیری و استیک‌اسید صنعتی متمایز است.
  • طیف‌سنجی FTIR توانست سرکه طبیعی را از استیک‌اسید صنعتی با اختلاف واضح در باندهای 3300–3600 و 1500–1800 جدا کند..
  • اندازه‌گیری عناصر کم‌مقدار نشان داد استیک‌اسید صنعتی دارای مقادیر بسیار بالای سرب و نیکل و فاقد ویژگی‌های سرکه طبیعی است.
  • پروفایل HPLC اسیدهای آلی به‌عنوان اثرانگشت شیمیایی قابل‌اعتماد برای شناسایی سرکه اصیل معرفی شد

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Authenticity of vinegar based on the determination of phenolic compounds, antioxidant capacity, and FTIR spectroscopy: comparison of fermented, distilled vinegar, and industrial acetic acid

نویسندگان [English]

  • Farnaz Vaziri Nasrin 1
  • Fatemeh Ghamari 2
  • maryam moslehishad 3
  • Fataneh Hashempour-baltork 1
1 Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
2 Assistant professor Department of science payame noor university ,P.O.Box 19395-4697,Tehran,Iran
3 Department of Food Science and Technology, ShQ. C., Islamic Azad University, Shahr-e Qods, Iran
چکیده [English]

Introduction

Vinegar is a common condiment used in many foods and beverages, which has health-promoting properties. This study aimed to determine the authenticity and comparison of distilled and fermented vinegars compared to vinegar produced with industrial acetic acid.

Materials and Methods

In this study, 15 commercial brands of distilled and fermented vinegar samples were prepared and the vinegar samples were examined and compared in terms of total acidity, oxidation index, antioxidant activity, content of phenolic compounds and organic acids, and trace elements.

Results

Our results showed that the decrease in total acidity was related to fermented samples. Also, fermented vinegars had higher oxidation value, antioxidant activity, phenolic and organic acids with a significant difference (p<0.05) compared to distilled vinegars and acetic acid. FTIR spectrum also confirmed the presence of nutritional compounds in fermented samples in addition to acetic acid. Also, in terms of heavy metals such as lead and nickel, fermented vinegars were safer than industrial acetic acid (p<0.05), while fermented vinegars had more magnesium than acetic acid and distilled samples. Industrial acetic acid had higher lead and nickel (p<0.05), due to the catalyst applied for industrial acetic acid production.

Conclusion

The obtained data highlight the high quality of fermented vinegars compared to commercial vinegars. The biochemical composition of vinegars traditionally obtained from fruits and through simple recipes demonstrates their role and importance for human well-being and their potential beneficial effects on health. Overall, the results of this study showed that fermented vinegars are superior in terms of nutritional and functional properties to distilled vinegars and industrial acetic acid.

کلیدواژه‌ها [English]

  • Vinegar
  • Fermentation
  • Antioxidant
  • Authentication
  • Acetic Acid
[1] Román-Camacho, JJ., García-García, I., Santos-Dueñas, IM., García-Martínez, T., & Mauricio, JC. (2023). Latest trends in industrial vinegar production and the role of acetic acid bacteria: classification, metabolism, and applications—a comprehensive review. Foods, 12(19), 3705.
[2] Luzón-Quintana, LM., Castro, R., Durán-Guerrero, E. (2021). Biotechnological processes in fruit vinegar production. Foods,10(5), 945.
[3] Shahi, T JS., Pouyan, M., Ebrahimi, M., Hosseini, S., Raghara, H., et al. (2022). Comparison of physicochemical and antioxidant properties of traditional jujube, apple, and grape vinegars with industrial apple vinegar. Iran. J. Food Sci. Technol., 18(121), 173.
[4] Liu Q, Tang G-Y, Zhao C-N, Gan R-Y, & Li H-B. (2019). Antioxidant activities, phenolic profiles, and organic acid contents of fruit vinegars. Antioxidants, 8(4),78.
[5] Perumpuli, P., Dilrukshi, D., Vinegar, A. (2022) functional ingredient for human health. Int. Food Res. J., 29(5), 959–74.
[6] Chen, G-L., Zheng, F-J., Lin, B., Yang, Y-X., Fang, X-C., Verma, KK., et al. (2023). Vinegar: A potential source of healthy and functional food with special reference to sugarcane vinegar. Front. Nutr.,10, 1145862.
[7]Wagner, M., Heredia, JZ., Montemerlo, A., Ortiz, D., Camiña, JM., Garrido, M., et al. (2024). Multiparametric analysis and authentication of Argentinian vinegars from spectral sources. J. Food Compos. Anal., 125, 105801.
[8]Cavdaroglu, C., & Ozen, B. (2023). Applications of UV–visible, fluorescence and mid-infrared spectroscopic methods combined with chemometrics for the authentication of apple vinegar. Foods, 12(6), 1139. https://doi.org/10.3390/foods12061139.
[9]Cavdaroglu, C, & Ozen, B. (2023). Authentication of vinegars with targeted and non-targeted methods. Food Rev. Int., 39(1), 41–58. https://doi.org/10.1080/87559129.2021.1894169
[10] Cavdaroglu, C., & Ozen, B. (2022). Detection of vinegar adulteration with spirit vinegar and acetic acid using UV–visible and fourier transform infrared spectroscopy. Food Chem., 379, 132150.
[11] ISIRI 1394. Spice and Condiments— Vinegar — Test Methods. Iran National Standards Organization. 3th Revision 2022. file:///C:/Users/f.hashempour/Downloads/1394.pdf.
[12] Teimorimanesh, M., & Abbasi, H. (2022). Optimization of ammonium phosphate, potassium sulfate and Saccharomyces cerevisiae in the production of acetic acid in a batch fermentor using response surface methodology. Iran. Food Sci. Technol. Res. J., 18(4), 397-413.
[13] Singelton, V., & Rossi, J. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 16(3), 144–58.
[14]. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Bio. Med. https://doi.org/10.1016/S0891-5849(98)00315-3
[15] Calle, JLP., Ferreiro-González, M., Ruiz-Rodríguez, A., Barbero, GF., Álvarez, JÁ., Palma, M., et al. (2021). A methodology based on FT-IR data combined with random forest model to generate spectralprints for the characterization of high-quality vinegars. Foods, 10(6),1411.  
[16] Hajimahmoodi, M., Khanavi, M., Sadeghpour, O., Ardekani, MRS., Mazde, FZ., Khoddami, MS., et al. (2016). Application of organic acid based artificial neural network modeling for assessment of commercial vinegar authenticity. Food Anal. Methods, 9(12), 3451–9.
[17] Hashemi, M., Salehi, T., Aminzare, M., Raeisi, M., & Afshari, A. (2017). Contamination of toxic heavy metals in various foods in Iran: a review. J. Pharm. Sci. Res., 9(10),1692–7.
[18] Solieri, L., & Giudici, P. (2008). Yeasts associated to traditional balsamic vinegar: ecological and technological features. Int. J. Food Microbiol., 125(1), 36–45. https://doi.org/10.1016/j.ijfoodmicro.2007.06.022
[19]  Cosmulescu, S., Stoenescu, A-M., Trandafir, I., & Tuțulescu, F. (2022). Comparison of chemical properties between traditional and commercial vinegar. Horticulturae, 8(3), 225.  https://doi.org/10.3390/horticulturae8030225
[20] Qi, Z., Yang, H., Xia, X., Wang, W., & Yu, X. (2014). High strength vinegar fermentation by Acetobacter pasteurianus via enhancing alcohol respiratory chain. Biotechnol. Bioprocess Eng.,  19(2),289–9, https://doi.org/10.1007/s12257-013-0727-0
[21] Ho, CW., Lazim, AM., Fazry, S., Zaki, UKHH., Lim, SJ. (2017). Varieties, production, composition and health benefits of vinegars: A review. Food Chem., 221, 1621–30. https://doi.org/10.1016/j.foodchem.2016.10.128
[22] Ousaaid, D., Mechchate, H., Laaroussi, H., Hano, C., Bakour, M., El Ghouizi, A., et al. (2021). Fruits vinegar: Quality characteristics, phytochemistry, and functionality. Molecules, 27(1), 222. https://doi.org/10.3390/molecules27010222.
[23] Yildiz E. (2023). Characterization of fruit vinegars via bioactive and organic acid profile using chemometrics. Foods, 12(20), 3769.
[24] Antoniewicz, J., Kochman, J., Jakubczyk, K., & Janda-Milczarek, K. (2021). The influence of time and storage conditions on the antioxidant potential and total phenolic content in homemade grape vinegars. Molecules, 26(24), 7616.  
[25] Bakir, S., Devecioglu, D., Kayacan, S., Toydemir, G., Karbancioglu-Guler, F., Capanoglu, E. (2017). Investigating the antioxidant and antimicrobial activities of different vinegars. Eur. Food Res. Technol., 243(12), 2083–94.
[26] Mohamed, SH., Salim, AI., Issa, YM., & Ali, AE. (2021). Detection and identification of adulteration in vinegar samples based on reversed-phase high-performance liquid chromatographic (RP-HPLC) strategies. ACS Food Sci. Technol., 2(1), 21–30.
[27] Kadiroğlu, P. (2018). FTIR spectroscopy for prediction of quality parameters and antimicrobial activity of commercial vinegars with chemometrics. J. Sci. Food Agric., 98(11), 4121–7.  
[28] Shao, L., Zhao, X., Cai, W., Zhang, Q., & Shan, C. (2025). Changes in nutrient composition, antioxidant capacity, phenolics, and volatile organic compounds in black mulberry vinegar across different fermentation stages. Food Bios., 66,106222.
[29] Karavoltsos, S., Sakellari, A., Sinanoglou, VJ., Zoumpoulakis, P., Plavšić, M., Dassenakis, M., et al. (2020). Copper complexing capacity and trace metal content in common and balsamic vinegars: impact of organic matter. Molecules, 25(4), 861.
[30] Judith, OO., Ezemba, AS., Ajeh, JE., Chude, CO., & Ezemba, CC. (2021). Evaluation of the proximate and elemental composition of traditional and industrial produced vinegar. Int. J. Innov. Res. Dev.,10(5).
[31] Antoniewicz, J., Jakubczyk, K., Kupnicka, P., Bosiacki, M., Chlubek, D., Janda, K. (2022). Analysis of selected minerals in homemade grape vinegars obtained by spontaneous fermentation. Biol. Trace Elem. Res., 200, 910-919.
 
دوره 13، شماره 2
بهمن 1404
صفحه 207-221
  • تاریخ دریافت: 01 آذر 1404
  • تاریخ بازنگری: 06 دی 1404
  • تاریخ پذیرش: 14 دی 1404
  • تاریخ اولین انتشار: 14 دی 1404
  • تاریخ انتشار: 01 بهمن 1404