[1] da Silva, J. A. T., Rana, T. S., Narzary, D., Verma, N., Meshram, D. T., & Ranade, S. A. (2013). Pomegranate biology and biotechnology: A review. Sci. Hortic., 160, 85-107.
[2] Sarkhosh, A., Yavari, A. M., & Zamani, Z. (2020). The pomegranate: botany, production and uses (1st ed.). Boston: CABI.
[3] Schubert, S. Y., Lansky, E. P., & Neeman, I. (1999). Antioxidant and eicosanoid enzyme inhibition properties of pomegranate seed oil and fermented juice flavonoids.
J. Ethnopharmacol., 66, 11-17. https://doi.org/10.1016/S0378-8741(98)00222-0
[4] Kaseke, T., Opara, U. L., & Fawole, O. A. (2020). Effect of microwave pretreatment of seeds on the quality and antioxidant capacity of pomegranate seed oil. Foods. 9, 1287.
[5] Fadavi, A., Barzegar, M., & Azizi, M. H. (2006). Determination of fatty acids and total lipid content in oilseed of 25 pomegranates varieties grown in Iran.
J. Food Compos. Anal., 19, 676-680. https://doi.org/10.1016/j.jfca.2004.09.002
[6] Leyva-Porras, C., Román-Aguirre, M., Cruz-Alcantar, P., Pérez-Urizar, J. T., & Saavedra-Leos, M. Z. (2021). Application of antioxidants as an alternative improving of shelf life in foods.
Polysaccharides. 2, 594-607. https://doi.org/10.3390/polysaccharides2030036
[7] Cortez-Trejo, M., Wall-Medrano, A., Gaytán-Martínez, M., & Mendoza, S. (2021). Microencapsulation of pomegranate seed oil using a succinylated taro starch: Characterization and bioaccessibility study.
Food Biosci., 41, 100929. https://doi.org/10.1016/j.fbio.2021.100929
[8] Sharif, N., Khoshnoudi-Nia, S., & Jafari, S. M. (2020). Nano/microencapsulation of anthocyanins; a systematic review and meta-analysis. Food Res. Int., 132, 109077.
[9] Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview.
Food Res. Int., 40, 1107-1121. https://doi.org/10.1016/j.foodres.2007.07.004
[10] Ng, S.-K., Jessie, L.-Y. L., Tan, C.-P., Long, K., & Nyam, K.-L. (2013). Effect of accelerated storage on microencapsulated kenaf seed oil. J. Am. Oil Chem. Soc., 90, 1023-1029.
[11] Roriz, C., Carocho, M., Heleno, S. A., Ferreira, I. C., & Barros, L. (2021). Stabilization of Bioactive Molecules Through the Spray-Drying Technique: Current Applications and Challenges.
Basic Protoc. Encapsul. Food Ingred., 11-32. https://doi.org/10.1007/978-1-0716-1649-9_2
[12] Tupuna, D. S., Paese, K., Guterres, S. S., Jablonski, A., Flôres, S. H., & de Oliveira Rios, A. (2018). Encapsulation efficiency and thermal stability of norbixin microencapsulated by spray-drying using different combinations of wall materials. Ind. Crops Prod., 111, 846-855.
[13] Otálora, M. C., Carriazo, J. G., Iturriaga, L., Nazareno, M. A., & Osorio, C. (2015). Microencapsulation of betalains obtained from cactus fruit (Opuntia ficus-indica) by spray drying using cactus cladode mucilage and maltodextrin as encapsulating agents. Food Chem., 187, 174-181.
[14] Sivalingam, P., Singh, D., & Chauhan, S. (2012). Morphological and molecular diversity of an underutilized fruit crop-Cordia myxa L. germplasm from the arid region of Rajasthan, India.
Genet. Resour. Crop Evol., 59, 305-316. https://doi.org/10.1007/s10722-011-9781-7
[15] Ghaba, Z. S., Ebeid, A. F., Soliman, W. S., & Gahory, A.-A. (2024). Enhancing Cordia myxa germination and seedling growth through breaking seeds dormancy techniques.
Aswan Univ. J. Sci. Technol., 4, 111-119. https://doi.org/10.21608/aujst.2024.301084.1108
[16] Hojjati, M., & Beirami-Serizkani, F. (2020). Structural characterization, antioxidant and antibacterial activities of a novel water soluble polysaccharide from Cordia myxa fruits.
J. Food Meas. Charact., 14, 3417-3425. https://doi.org/10.1007/s11694-020-00586-y
[17] Haq, M. A., Alam, M. J., & Hasnain, A. (2013). Gum Cordia: A novel edible coating to increase the shelf life of Chilgoza (Pinus gerardiana). LWT – Food Sci. Technol., 50, 306-311.
[18] Balasubramaniam, V., Lee, J., & Serventi, L. (2023). Understanding new foods: Development of next generation of food processing, packaging, and ingredients technologies for clean label foods. In: L. Serventi (Eds.). Sustainable Food Innovation (1st ed., pp. 157-167). Cham: Springer.
[19] Hussain, S., Mohamed, A. A., Alamri, M. S., Ibraheem, M. A., Qasem, A. A. A., Shahzad, S. A. (2020). Use of gum cordia (cordia myxa) as a natural starch modifier; effect on pasting, thermal, textural, and rheological properties of corn starch. Foods. 9, 909.
[20] Macedo, J. P., Fernandes, L. L., Formiga, F. R., Reis, M. F., Nagashima Júnior, T., Soares, L. A. (2006). Micro-emultocrit technique: a valuable tool for determination of critical HLB value of emulsions. AAPS PharmSciTech. 7, 21.
[21] Kamaruzaman, N., & Yusop, S. M. (2021). Determination of stability of cosmetic formulations incorporated with water-soluble elastin isolated from poultry.
J. King Saud Univ. Sci., 33, 101519. https://doi.org/10.1016/j.jksus.2021.101519
[22] Lee, Y.-K., Ganesan, P., Baharin, B. S., & Kwak, H.-S. (2015). Characteristics, stability, and release of peanut sprout extracts in powdered microcapsules by spray drying.
Dry. Technol., 33, 1991-2001. https://doi.org/10.1080/07373937.2014.951123
[23] Jafari, S. M., He, Y., & Bhandari, B. (2007). Encapsulation of nanoparticles of d-limonene by spray drying: role of emulsifiers and emulsifying techniques. Dry. Technol., 25, 1069-1079.
[24] Di Giorgio, L., Salgado, P. R., & Mauri, A. N. (2019). Encapsulation of fish oil in soybean protein particles by emulsification and spray drying. Food Hydrocoll., 87, 891-901.
[25] Yekdane, N., & Goli, S. A. H. (2019). Effect of pomegranate juice on characteristics and oxidative stability of microencapsulated pomegranate seed oil using spray drying.
Food Bioproc. Technol., 12, 1614-1625. https://doi.org/10.1007/s11947-019-02325-8
[26] Cihat Icyer, N., Toker, O. S., Karasu, S., Tornuk, F., Kahyaoglu, T., & Arici, M. (2017). Microencapsulation of fig seed oil rich in polyunsaturated fatty acids by spray drying.
J. Food Meas. Charact., 11, 50-57. https://doi.org/10.1007/s11694-016-9370-8
[27] Mirhosseini, H., Tan, C. P., Hamid, N. S., & Yusof, S. (2008). Optimization of the contents of Arabic gum, xanthan gum and orange oil affecting turbidity, average particle size, polydispersity index and density in orange beverage emulsion. Food Hydrocoll., 22, 1212-1223.
[28] Kupikowska-Stobba, B., Domagała, J., & Kasprzak, M. M. (2024). Critical review of techniques for food emulsion characterization. Appl. Sci., 14, 1069.
[29] Som, A. M., Balang, E. M., & Hamid, H. A. A. (2023). Comparative study and performance evaluation of chemical and biosurfactants in water-in-oil emulsification process.
Key Eng. Mater., 939, 93-102. https://doi.org/10.4028/p-y8fry2
[30] Dickinson, E. (2003). Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocoll., 17, 25-39.
[31] Chang, H. W., Tan, T. B., Tan, P. Y., Abas, F., Lai, O. M., Wang, Y. (2018). Physical properties and stability evaluation of fish oil-in-water emulsions stabilized using thiol-modified β-lactoglobulin fibrils-chitosan complex. Food Res. Int., 105, 482-491.
[32] Jafari, S. M., Assadpoor, E., He, Y., & Bhandari, B. (2008). Encapsulation efficiency of food flavours and oils during spray drying. Dry. Technol., 26, 816-835.
[33] Drusch, S. (2007). Sugar beet pectin: A novel emulsifying wall component for microencapsulation of lipophilic food ingredients by spray-drying. Food Hydrocoll., 21, 1223-1228.
[34] Saifullah, M., Yusof, Y., Chin, N., & Aziz, M. (2016). Physicochemical and flow properties of fruit powder and their effect on the dissolution of fast dissolving fruit powder tablets.
Powder Technol., 301, 396-404. https://doi.org/10.1016/j.powtec.2016.06.035
[35] de Barros Fernandes, R. V., Borges, S. V., Silva, E. K., da Silva, Y. F., de Souza, H. J. B., do Carmo, E. L. (2016). Study of ultrasound-assisted emulsions on microencapsulation of ginger essential oil by spray drying. Ind. Crops Prod., 94, 413-423.
[36] Šavikin, K., Nastić, N., Janković, T., Bigović, D., Miličević, B., Vidović, S. (2021). Effect of type and concentration of carrier material on the encapsulation of pomegranate peel using spray drying method.
Foods. 10, 1968. https://doi.org/10.3390/foods10091968
[37] Sekhavatizadeh, S. S., Ganje, M., Hashemi, S. S., & Mozafarian, M. R. (2025). Encapsulation of bioactive compounds from Sargassum ilicifolium: Influence of wall material type and loading content on the physicochemical and structural properties of microparticles. Heliyon. 11.
[38] Carneiro, H. C., Tonon, R. V., Grosso, C. R., & Hubinger, M. D. (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. J. Food Eng., 115, 443-451.
[40] Rashid, R., Wani, S. M., Manzoor, S., Masoodi, F., & Altaf, A. (2022). Nanoencapsulation of pomegranate peel extract using maltodextrin and whey protein isolate. Characterisation, release behaviour and antioxidant potential during simulated invitro digestion. Food Biosci., 50, 102135.
[41] Bhat, S., Saini, C., Kumar, V., & Sharma, H. (2021). Spray drying of bottle gourd juice: effect of different carrier agents on physical, antioxidant capacity, reconstitution, and morphological properties. ACS Food Sci. Technol., 1, 282-291.
[42] Parvez, S., Wani, I. A., & Masoodi, F. (2022). Nanoencapsulation of green tea extract using maltodextrin and its characterisation. Food Chem., 384, 132579.
[43] Hojjati, M., Razavi, H., Rezaei, K., & Gilani, K. (2013). Effect of wall components on characteristics of natural canthaxanthin microencapsulated using spray-drying. Iran. J. Nutr. Sci. Food Technol., 8, 45-54. [In Persian].
[44] Barbosa, M., Borsarelli, C., & Mercadante, A. (2005). Light stability of spray-dried bixin encapsulated with different edible polysaccharide preparations.
Food Res. Int., 38, 989-994. https://doi.org/10.1016/j.foodres.2005.02.018
[45] Mcclements, D. J. (2007). Critical review of techniques and methodologies for characterization of emulsion stability. Critical reviews in food science and nutrition. 47, 611-649.
[46] Benelli, L., & Oliveira, W. P. (2019). Fluidized bed coating of inert cores with a lipid-based system loaded with a polyphenol-rich Rosmarinus officinalis extract.
Food Bioprod. Process., 114, 216-226. https://doi.org/10.1016/j.fbp.2019.01.004
[47] Yun, P., Devahastin, S., & Chiewchan, N. (2021). Microstructures of encapsulates and their relations with encapsulation efficiency and controlled release of bioactive constituents: A review. Compr. Rev. Food Sci. Food Saf., 20, 1768-1799.
[48] Fang, X., Shima, M., & Adachi, S. (2005). Effects of drying conditions on the oxidation of linoleic acid encapsulated with gum arabic by spray-drying.
Food Sci. Technol. Res., 11, 380-384. https://doi.org/10.3136/fstr.11.380
[49] Nayak, P. K., Dash, U., Rayaguru, K., & Krishnan, K. R. (2016). Physio‐chemical changes during repeated frying of cooked oil: A Review. J. Food Biochem. 40, 371-390.
[50] Kahraman, O., Petersen, G. E., & Fields, C. (2025). Valorization of Coffee Pulp: Spray-Dried Hemp Oil Microcapsules Stabilized with Coffee Pectin and Maltodextrin.
Sustainability. 17, 8152. https://doi.org/10.3390/su17188152