ریزپوشانی روغن هستة انار با استفاده از صمغ میوة سپستان و مالتودکسترین به روش خشک‌کردن پاششی: ویژگی‌های فیزیکوشیمیایی و پایداری اکسیداتیو

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده علوم، دانشگاه شهید چمران اهواز، بلوار گلستان، اهواز، ایران.

2 - استاد، گروه شیمی، دانشکده علوم، دانشگاه شهید چمران اهواز، بلوار گلستان، اهواز، ایران.

3 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

با وجود فعالیت آنتی‌اکسیدانی پایین هسته‌های انار، روغن هستة انار (PSO) فعالیت آنتی‌اکسیدانی بسیار زیادی دارد اما ناپایدار است. در این مطالعه از خشک‌کن پاششی برای ریزپوشانی PSO با صمغ میوه سپستان ((CFG و مالتودکسترین استفاده شد. در پاسخ به افزایش تقاضای مصرف‌کنندگان برای محصولات غذایی با برچسب‌های تمیز، دیواره‌های طبیعی و ایمن به کارگرفته شد. برای این منظور امولسیون‌هایی با محتوای کل جامد (TSC) ۲۰ درصد با نسبت PSO به مواد دیواره‌ای 1:4 تهیه شدند. محلول‌های مالتودکسترین شامل ۰، ۳، ۶ و ۹ درصد وزنی صمغ میوه سپستان (CFG) بودند. امولسیون‌ها، پس از ارزیابی شاخص خامه‌ای شدن و ویسکوزیته، با استفاده از خشک‌کن پاششی به میکروکپسول تبدیل شدند. نتایج نشان داد که میکروکپسول‌های تهیه‌شده با نسبت 6 درصد CFG بالاترین راندمان کپسوله‌سازی (11/88 درصد)، کوچک‌ترین اندازه ذرات (μm1/124)، بیشترین چگالی توده (g/cm3 38/0)، بالاترین کرویت و بالاترین پایداری اکسیداتیو را داشتند. این مطالعه نشان داد که با استفاده از سیستم میکروکپسوله‌سازی پاک (CL) می‌توان به ضایعات فرآوری انار ارزش افزوده داد و به این طریق روش پایداری برای استفاده از مواد طبیعی و بومی مورد تأیید و ایمن (GRAS) در صنعت غذایی و راهکار مؤثری به‌منظور حل مشکل پایداری اکسیداتیو PSO ارائه داد.

چکیده تصویری

ریزپوشانی روغن هستة انار با استفاده از صمغ میوة سپستان و مالتودکسترین به روش خشک‌کردن پاششی: ویژگی‌های فیزیکوشیمیایی و پایداری اکسیداتیو

تازه های تحقیق

  • ریزکپسول‌های پاک روغن هسته انار، با دیواره‌ای شامل صمغ میوه سپستان بومی به روش خشک‌کن پاششی تولید شدند.
  • پس از ارزیابی ویژگی‌های امولسیون و ریزکپسول‌ها، نسبت ۶٪ وزنی صمغ میوه سپستان به‌عنوان بهینه انتخاب شد.
  • تصاویر SEM نشان دادند میکروکپسول‌های حاوی ۶٪ صمغ سپستان کروی، با سطح صاف و کیفیت بالا هستند.
  • مقادیر پایین‌تر شاخص پراکسید در میکروکپسول‌ها نسبت به روغن آزاد نشان‌دهنده کارآمدی ریزپوشانی در محافظت از روغن هسته انار است.
  • نتایج این پژوهش کاربرد بالقوه این سامانه را برای حفاظت از روغن هسته انار را در صنایع غذایی تأیید می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Spray-drying microencapsulation of pomegranate seed oil with Cordia gum fruit and maltodextrin: Physicochemical and oxidative stability

نویسندگان [English]

  • Mohammad Hooshyari 1
  • Mohammad Reza Fat'hi Emadabadi 2
  • Hassan Zaki Dizaji 3
1 Ph.D. Student, Chemistry Dept., Faculty of Science, Shahid Chamran University of Ahvaz, Golestan Blvd., Ahvaz, Iran,
2 Professor, Chemistry Dept., Faculty of Science, Shahid Chamran University of Ahvaz, Golestan Blvd., Ahvaz, Iran
3 Biosystems Engineering Dept., Agricultural faculty, Shahid Chamran University of Ahvaz, Ahvaz, Iran,
چکیده [English]

Despite the low antioxidant activity of pomegranate seeds, pomegranate seed oil (PSO) has very high antioxidant activity but is unstable. In this study, PSO was microencapsulated with natural materials and a clean label by spray drying. For this purpose, walls with different concentrations of cordia fruit gum (CFG) and maltodextrin were used. The creaming index of the emulsions was measured and, their physicochemical and oxidative stability properties were investigated. The results showed that microcapsules prepared by spray drying with a 6% CFG ratio had the highest encapsulation efficiency (88.11%), the smallest particle size (124.1 μm), the highest bulk density (0.38 g/cm3), the highest sphericity, and the highest oxidative stability. All the microcapsules' moisture contents fell below the 4% threshold that is considered acceptable for dry powders in the food sector. This study showed that using the microencapsulation as a clean-label technology (CL) system, it is possible to add value to pomegranate processing waste, thereby providing a sustainable method for using natural and indigenous ingredients that are generally recognized as safe (GRAS) in the food industry and an effective solution to solve the problem of oxidative stability of PSO.

کلیدواژه‌ها [English]

  • Pomegranate seed oil
  • Cordia fruit gum
  • clean label
  • spray drying
  • oxidative stability
[1] da Silva, J. A. T., Rana, T. S., Narzary, D., Verma, N., Meshram, D. T., &  Ranade, S. A. (2013). Pomegranate biology and biotechnology: A review. Sci. Hortic., 160, 85-107.
[2] Sarkhosh, A., Yavari, A. M., &  Zamani, Z. (2020). The pomegranate: botany, production and uses (1st ed.). Boston: CABI.
[3] Schubert, S. Y., Lansky, E. P., &  Neeman, I. (1999). Antioxidant and eicosanoid enzyme inhibition properties of pomegranate seed oil and fermented juice flavonoids. J. Ethnopharmacol., 66, 11-17. https://doi.org/10.1016/S0378-8741(98)00222-0
[4] Kaseke, T., Opara, U. L., &  Fawole, O. A. (2020). Effect of microwave pretreatment of seeds on the quality and antioxidant capacity of pomegranate seed oil. Foods. 9, 1287.
[5] Fadavi, A., Barzegar, M., &  Azizi, M. H. (2006). Determination of fatty acids and total lipid content in oilseed of 25 pomegranates varieties grown in Iran. J. Food Compos. Anal., 19, 676-680. https://doi.org/10.1016/j.jfca.2004.09.002
[6] Leyva-Porras, C., Román-Aguirre, M., Cruz-Alcantar, P., Pérez-Urizar, J. T., &  Saavedra-Leos, M. Z. (2021). Application of antioxidants as an alternative improving of shelf life in foods. Polysaccharides. 2, 594-607. https://doi.org/10.3390/polysaccharides2030036
[7] Cortez-Trejo, M., Wall-Medrano, A., Gaytán-Martínez, M., &  Mendoza, S. (2021). Microencapsulation of pomegranate seed oil using a succinylated taro starch: Characterization and bioaccessibility study. Food Biosci., 41, 100929. https://doi.org/10.1016/j.fbio.2021.100929
[8] Sharif, N., Khoshnoudi-Nia, S., &  Jafari, S. M. (2020). Nano/microencapsulation of anthocyanins; a systematic review and meta-analysis. Food Res. Int., 132, 109077.
[9] Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., &  Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res. Int., 40, 1107-1121. https://doi.org/10.1016/j.foodres.2007.07.004
[10] Ng, S.-K., Jessie, L.-Y. L., Tan, C.-P., Long, K., &  Nyam, K.-L. (2013). Effect of accelerated storage on microencapsulated kenaf seed oil. J. Am. Oil Chem. Soc., 90, 1023-1029.
[11] Roriz, C., Carocho, M., Heleno, S. A., Ferreira, I. C., &  Barros, L. (2021). Stabilization of Bioactive Molecules Through the Spray-Drying Technique: Current Applications and Challenges. Basic Protoc. Encapsul. Food Ingred., 11-32. https://doi.org/10.1007/978-1-0716-1649-9_2
[12] Tupuna, D. S., Paese, K., Guterres, S. S., Jablonski, A., Flôres, S. H., &  de Oliveira Rios, A. (2018). Encapsulation efficiency and thermal stability of norbixin microencapsulated by spray-drying using different combinations of wall materials. Ind. Crops Prod., 111, 846-855.
[13] Otálora, M. C., Carriazo, J. G., Iturriaga, L., Nazareno, M. A., &  Osorio, C. (2015). Microencapsulation of betalains obtained from cactus fruit (Opuntia ficus-indica) by spray drying using cactus cladode mucilage and maltodextrin as encapsulating agents. Food Chem., 187, 174-181.
[14] Sivalingam, P., Singh, D., &  Chauhan, S. (2012). Morphological and molecular diversity of an underutilized fruit crop-Cordia myxa L. germplasm from the arid region of Rajasthan, India. Genet. Resour. Crop Evol., 59, 305-316. https://doi.org/10.1007/s10722-011-9781-7
[15] Ghaba, Z. S., Ebeid, A. F., Soliman, W. S., &  Gahory, A.-A. (2024). Enhancing Cordia myxa germination and seedling growth through breaking seeds dormancy techniques. Aswan Univ. J. Sci. Technol., 4, 111-119. https://doi.org/10.21608/aujst.2024.301084.1108
[16] Hojjati, M., & Beirami-Serizkani, F. (2020). Structural characterization, antioxidant and antibacterial activities of a novel water soluble polysaccharide from Cordia myxa fruits. J. Food Meas. Charact., 14, 3417-3425. https://doi.org/10.1007/s11694-020-00586-y
[17] Haq, M. A., Alam, M. J., &  Hasnain, A. (2013). Gum Cordia: A novel edible coating to increase the shelf life of Chilgoza (Pinus gerardiana). LWT – Food Sci. Technol., 50, 306-311.
[18] Balasubramaniam, V., Lee, J., &  Serventi, L. (2023). Understanding new foods: Development of next generation of food processing, packaging, and ingredients technologies for clean label foods. In: L. Serventi (Eds.). Sustainable Food Innovation (1st ed., pp. 157-167). Cham: Springer.
[19] Hussain, S., Mohamed, A. A., Alamri, M. S., Ibraheem, M. A., Qasem, A. A. A., Shahzad, S. A. (2020). Use of gum cordia (cordia myxa) as a natural starch modifier; effect on pasting, thermal, textural, and rheological properties of corn starch. Foods. 9, 909.
[20] Macedo, J. P., Fernandes, L. L., Formiga, F. R., Reis, M. F., Nagashima Júnior, T., Soares, L. A. (2006). Micro-emultocrit technique: a valuable tool for determination of critical HLB value of emulsions. AAPS PharmSciTech. 7, 21.
[21] Kamaruzaman, N., & Yusop, S. M. (2021). Determination of stability of cosmetic formulations incorporated with water-soluble elastin isolated from poultry. J. King Saud Univ. Sci., 33, 101519. https://doi.org/10.1016/j.jksus.2021.101519
[22] Lee, Y.-K., Ganesan, P., Baharin, B. S., &  Kwak, H.-S. (2015). Characteristics, stability, and release of peanut sprout extracts in powdered microcapsules by spray drying. Dry. Technol., 33, 1991-2001. https://doi.org/10.1080/07373937.2014.951123
[23] Jafari, S. M., He, Y., &  Bhandari, B. (2007). Encapsulation of nanoparticles of d-limonene by spray drying: role of emulsifiers and emulsifying techniques. Dry. Technol., 25, 1069-1079.
[24] Di Giorgio, L., Salgado, P. R., &  Mauri, A. N. (2019). Encapsulation of fish oil in soybean protein particles by emulsification and spray drying. Food Hydrocoll., 87, 891-901.
[25] Yekdane, N., & Goli, S. A. H. (2019). Effect of pomegranate juice on characteristics and oxidative stability of microencapsulated pomegranate seed oil using spray drying. Food Bioproc. Technol., 12, 1614-1625. https://doi.org/10.1007/s11947-019-02325-8
[26] Cihat Icyer, N., Toker, O. S., Karasu, S., Tornuk, F., Kahyaoglu, T., &  Arici, M. (2017). Microencapsulation of fig seed oil rich in polyunsaturated fatty acids by spray drying. J. Food Meas. Charact., 11, 50-57. https://doi.org/10.1007/s11694-016-9370-8
[27] Mirhosseini, H., Tan, C. P., Hamid, N. S., &  Yusof, S. (2008). Optimization of the contents of Arabic gum, xanthan gum and orange oil affecting turbidity, average particle size, polydispersity index and density in orange beverage emulsion. Food Hydrocoll., 22, 1212-1223.
[28] Kupikowska-Stobba, B., Domagała, J., &  Kasprzak, M. M. (2024). Critical review of techniques for food emulsion characterization. Appl. Sci., 14, 1069.
[29] Som, A. M., Balang, E. M., &  Hamid, H. A. A. (2023). Comparative study and performance evaluation of chemical and biosurfactants in water-in-oil emulsification process. Key Eng. Mater., 939, 93-102. https://doi.org/10.4028/p-y8fry2
[30] Dickinson, E. (2003). Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocoll., 17, 25-39.
[31] Chang, H. W., Tan, T. B., Tan, P. Y., Abas, F., Lai, O. M., Wang, Y. (2018). Physical properties and stability evaluation of fish oil-in-water emulsions stabilized using thiol-modified β-lactoglobulin fibrils-chitosan complex. Food Res. Int., 105, 482-491.
[32] Jafari, S. M., Assadpoor, E., He, Y., &  Bhandari, B. (2008). Encapsulation efficiency of food flavours and oils during spray drying. Dry. Technol., 26, 816-835.
[33] Drusch, S. (2007). Sugar beet pectin: A novel emulsifying wall component for microencapsulation of lipophilic food ingredients by spray-drying. Food Hydrocoll., 21, 1223-1228.
[34] Saifullah, M., Yusof, Y., Chin, N., &  Aziz, M. (2016). Physicochemical and flow properties of fruit powder and their effect on the dissolution of fast dissolving fruit powder tablets. Powder Technol., 301, 396-404. https://doi.org/10.1016/j.powtec.2016.06.035
[35] de Barros Fernandes, R. V., Borges, S. V., Silva, E. K., da Silva, Y. F., de Souza, H. J. B., do Carmo, E. L. (2016). Study of ultrasound-assisted emulsions on microencapsulation of ginger essential oil by spray drying. Ind. Crops Prod., 94, 413-423.
[36] Šavikin, K., Nastić, N., Janković, T., Bigović, D., Miličević, B., Vidović, S. (2021). Effect of type and concentration of carrier material on the encapsulation of pomegranate peel using spray drying method. Foods. 10, 1968. https://doi.org/10.3390/foods10091968
[37] Sekhavatizadeh, S. S., Ganje, M., Hashemi, S. S., &  Mozafarian, M. R. (2025). Encapsulation of bioactive compounds from Sargassum ilicifolium: Influence of wall material type and loading content on the physicochemical and structural properties of microparticles. Heliyon. 11.
[38] Carneiro, H. C., Tonon, R. V., Grosso, C. R., &  Hubinger, M. D. (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. J. Food Eng., 115, 443-451.
[39] Anandharamakrishnan, C. (2015). Spray drying techniques for food ingredient encapsulation. John Wiley & Sons. https://doi.org/10.1002/9781118863985
[40] Rashid, R., Wani, S. M., Manzoor, S., Masoodi, F., &  Altaf, A. (2022). Nanoencapsulation of pomegranate peel extract using maltodextrin and whey protein isolate. Characterisation, release behaviour and antioxidant potential during simulated invitro digestion. Food Biosci., 50, 102135.
[41] Bhat, S., Saini, C., Kumar, V., &  Sharma, H. (2021). Spray drying of bottle gourd juice: effect of different carrier agents on physical, antioxidant capacity, reconstitution, and morphological properties. ACS Food Sci. Technol., 1, 282-291.
[42] Parvez, S., Wani, I. A., &  Masoodi, F. (2022). Nanoencapsulation of green tea extract using maltodextrin and its characterisation. Food Chem., 384, 132579.
[43] Hojjati, M., Razavi, H., Rezaei, K., &  Gilani, K. (2013). Effect of wall components on characteristics of natural canthaxanthin microencapsulated using spray-drying. Iran. J. Nutr. Sci. Food Technol., 8, 45-54. [In Persian].
[44] Barbosa, M., Borsarelli, C., &  Mercadante, A. (2005). Light stability of spray-dried bixin encapsulated with different edible polysaccharide preparations. Food Res. Int., 38, 989-994. https://doi.org/10.1016/j.foodres.2005.02.018
[45] Mcclements, D. J. (2007). Critical review of techniques and methodologies for characterization of emulsion stability. Critical reviews in food science and nutrition. 47, 611-649.
[46] Benelli, L., & Oliveira, W. P. (2019). Fluidized bed coating of inert cores with a lipid-based system loaded with a polyphenol-rich Rosmarinus officinalis extract. Food Bioprod. Process., 114, 216-226. https://doi.org/10.1016/j.fbp.2019.01.004
[47] Yun, P., Devahastin, S., &  Chiewchan, N. (2021). Microstructures of encapsulates and their relations with encapsulation efficiency and controlled release of bioactive constituents: A review. Compr. Rev. Food Sci. Food Saf., 20, 1768-1799.
[48] Fang, X., Shima, M., &  Adachi, S. (2005). Effects of drying conditions on the oxidation of linoleic acid encapsulated with gum arabic by spray-drying. Food Sci. Technol. Res., 11, 380-384. https://doi.org/10.3136/fstr.11.380
[49] Nayak, P. K., Dash, U., Rayaguru, K., &  Krishnan, K. R. (2016). Physio‐chemical changes during repeated frying of cooked oil: A Review. J. Food Biochem. 40, 371-390.
[50] Kahraman, O., Petersen, G. E., &  Fields, C. (2025). Valorization of Coffee Pulp: Spray-Dried Hemp Oil Microcapsules Stabilized with Coffee Pectin and Maltodextrin. Sustainability. 17, 8152. https://doi.org/10.3390/su17188152
 
دوره 13، شماره 2
بهمن 1404
صفحه 167-183
  • تاریخ دریافت: 26 مهر 1404
  • تاریخ بازنگری: 22 آبان 1404
  • تاریخ پذیرش: 25 آبان 1404
  • تاریخ اولین انتشار: 25 آبان 1404
  • تاریخ انتشار: 01 بهمن 1404