مدل‌سازی کمومتریکس برای پیش‌بینی سریع خواص فیزیکوشیمیایی و هیدروکسی متیل فورفورال عسل مبتنی بر طیف‌سنجی فراطیفی رامان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مرکز تحقیقات حلال جمهوری اسلامی ایران، سازمان غذا و دارو، وزارت بهداشت، درمان و آموزش پزشکی، تهران،

2 دپارتمان بهداشت و ایمنی مواد غذایی، دانشکده بهداشت، دانشگاه علوم پزشکی زنجان، زنجان، ایران

چکیده

هدف از این پژوهش، بررسی امکان‌سنجی پیش‌بینی سریع ویژگی‌های فیزیکوشیمیایی در عسل با استفاده از طیف‌سنجی رامان و مدل‌های کمومتریکس است. در این مطالعه، ۵۱ نمونه عسل از مناطق مختلف ایران جمع‌آوری شد و هر نمونه با طیف‌سنجی رامان (در محدوده ۱۰۰ تا ۳۵۰۰ cm⁻¹) آنالیز گردید. ویژگی‌های مورد بررسی شامل قندهای احیاکننده پیش از هیدرولیز، ساکاروز، رطوبت و هیدروکسی متیل فورفورال (HMF) بودند که با روش‌های استاندارد آزمایشگاهی اندازه‌گیری شدند. داده‌های طیفی پس از پیش‌پردازش میانگین-مرکزی با مقادیر آزمایشگاهی ویژگیهای فیزیکوشیمیایی همبسته‌سازی شده و چهار مدل مستقل مبتنی بر رگرسیون حداقل مربعات جزئی (PLS) توسعه یافت. مدل‌ها با استفاده از الگوریتم Kennard-Stone برای تقسیم داده‌ها به مجموعه‌های کالیبراسیون و تست، اعتبارسنجی متقاطع با روش Leave-One-Out برای بهینه‌سازی تعداد متغیرهای پنهان، و شاخص‌هایی مانند RMSEP، %REP، و RMSECV ارزیابی شدند. نتایج نشان داد که مدل‌های پیش‌بینی قندهای احیاکننده پیش از هیدرولیز و رطوبت با خطای نسبی پایین (به‌ترتیب ۱.۶۴% و ۵/۳۰%) عملکرد عالی داشتند، مدل ساکاروز با خطای نسبی حدود 95/11% قابل قبول بود، در حالی که مدل HMF با خطای نسبی 8/25% دقت کمتری نشان داد. به‌طور کلی، ترکیب طیف‌سنجی رامان با مدل‌های PLS روشی سریع، غیرمخرب، کم‌هزینه و سازگار با محیط‌زیست برای کنترل کیفیت عسل ارائه می‌دهد که می‌تواند در پایش اصالت، توزیع و توسعه اقتصادی این محصول نقش مؤثری ایفا کند.

چکیده تصویری

مدل‌سازی کمومتریکس برای پیش‌بینی سریع خواص فیزیکوشیمیایی و هیدروکسی متیل فورفورال عسل مبتنی بر طیف‌سنجی فراطیفی رامان

تازه های تحقیق

  • طیف‌سنجی رامان همراه با مدل‌های کمومتریکس روشی سریع، غیرمخرب و کم‌هزینه برای کنترل کیفیت و اصالت عسل ارائه می‌دهد.
  • مدل‌های PLS توسعه‌یافته توانستند قندهای احیاکننده و رطوبت عسل را با خطای نسبی پایین (۱.۶۴% و ۵.۳۰%) پیش‌بینی کنند.
  • ترکیب داده‌های طیفی و الگوریتم‌های آماری امکان تشخیص منشاء گیاهی و خلوص عسل را با دقت بالای ۹۰% فراهم کرد.
  • مدل‌های مبتنی بر طیف‌سنجی رامان توانایی شناسایی عسل تقلبی با دقت بالای ۹۸% در اعتبارسنجی نشان دادند.
  • این روش نوین می‌تواند جایگزینی پایدار، سریع و قابل اعتماد برای روش‌های پرهزینه و زمان‌بر سنتی در پایش عسل باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Chemometrics modeling for rapid prediction of physicochemical properties and hydroxymethylfurfural of honey based on hyperspectral Raman spectroscopy

نویسندگان [English]

  • Fataneh Hashempour-Baltork 1
  • Somaye Vali Zade 1
  • Adel Mirza Alizadeh 2
  • Behrooz Jannat 1
  • Hossein Rastegar 1
1 Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
2 Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran.
چکیده [English]

The aim of this study was to investigate the feasibility of rapid prediction of physicochemical properties in honey using Raman spectroscopy and chemometrics models. In this research, 51 honey samples were collected from different regions of Iran, and each sample was analyzed by Raman spectroscopy (in the range of 100–3500 cm⁻¹). The investigated properties included reducing sugars before hydrolysis, sucrose, moisture, and hydroxymethylfurfural (HMF), which were measured using standard laboratory methods. The spectral data, after mean-centering preprocessing, were correlated with the laboratory values of the physicochemical properties, and four independent models based on Partial Least Squares (PLS) regression were developed. The models were validated using the Kennard–Stone algorithm for splitting the data into calibration and test sets, cross-validation with the Leave-One-Out method to optimize the number of latent variables, and indices such as RMSEP, %REP, and RMSECV. The results showed that the predictive models for reducing sugars before hydrolysis and moisture performed excellently with low relative errors (1.64% and 5.30%, respectively). The sucrose model, with a relative error of about 11.95%, was acceptable, while the HMF model showed lower accuracy with a relative error of 25.8%. Overall, combining Raman spectroscopy with PLS models provides a rapid, non-destructive, cost-effective, and environmentally friendly approach for honey quality control, which can play a significant role in monitoring authenticity, distribution, and economic development of this product.

کلیدواژه‌ها [English]

  • Quality control
  • Physicochemical properties
  • Raman spectroscopy
  • Honey
  • Chemometrics model
  • PLS regression
[1] Duca A, Sturza A, Moacă E-A, Negrea M, Lalescu V-D, Lungeanu D, et al. (2019). Identification of resveratrol as bioactive compound of propolis from western Romania and characterization of phenolic profile and antioxidant activity of ethanolic extracts. Molecules, 24(18), 3368.
[2] Bogdanov, S. (2019). Harmonised methods of the International Honey Commission. Retrieved November 1, 2019, from http://www.ihc-platform.net
[3] AOAC International. (2005). Official methods of analysis of AOAC International (18th ed.). Rockville, MD: Author. ISBN 0935584544.
[4] Maione, C., Barbosa, F., Jr., & Barbosa, R. M. (2019). Predicting the botanical and geographical origin of honey with multivariate data analysis and machine learning techniques: A review. Computers and Electronics in Agriculture, 157, 436–446.
[5] Se, K. W., Wahab, R. A., Yaacob, S. N. S., & Ghoshal, S. K. (2019). Detection techniques for adulterants in honey: Challenges and recent trends. J. Food Compos. Anal, 80, 16–32. https://doi.org/10.1016/j.jfca.2019.04.001
[6] Das C, Chakraborty S, Acharya K, Bera NK, Chattopadhyay D, Karmakar A, et al. (2017). FT-MIR supported electrical impedance spectroscopy based study of sugar adulterated honeys from different floral origin. Talanta, 171, 327–334.
[7] Brereton RG. (2000). Introduction to multivariate calibration in analytical chemistry: Electronic Supplementary Information available. Analyst, 125(11), 2125–2154.
[8] Aliaño-González MJ, Ferreiro-González M, Espada-Bellido E, Palma M, & Barbero GF. 2019). A screening method based on visible-NIR spectroscopy for the identification and quantification of different adulterants in high-quality honey. Talanta, 203, 235–241.
[9] Corvucci F, Nobili L, Melucci D, & Grillenzoni F-V. (2015). The discrimination of honey origin using melissopalynology and Raman spectroscopy techniques coupled with multivariate analysis. Food Chem., 169, 297–304.
[10] Oroian, M., & Ropciuc, S. (2018). Botanical authentication of honeys based on Raman spectra. J. Food Meas. Charact., 12(1), 545–554.
[11] Frausto-Reyes C, Casillas-Peñuelas R, Quintanar-Stephano J, Macías-López E, Bujdud-Pérez J, & Medina-Ramírez, I. (2017). Spectroscopic study of honey from Apis mellifera from different regions in Mexico. Spectrochim. Acta A Mol. Biomol. Spectrosc., 178, 212–217.
[12] Jandrić Z, Haughey S, Frew R, McComb K, Galvin-King P, & Cannavan, A. (2015). Discrimination of honey of different floral origins by a combination of various chemical parameters. Food Chem., 189, 52–59.
[13] Oroian M, Ropciuc S, & Paduret, S. (2018). Honey adulteration detection using Raman spectroscopy. Food Anal. Methods, 11(4), 959–968.
[14] Anjos O, Santos AJ, Paixão V, & Estevinho, L. M. (2018). Physicochemical characterization of Lavandula spp. honey with FT-Raman spectroscopy. Talanta, 178, 43–48.
[15] Özbalci B, Boyaci İH, Topcu A, Kadılar C, & Tamer, U. (2013). Rapid analysis of sugars in honey by processing Raman spectrum using chemometric methods and artificial neural networks. Food Chem., 136(3–4), 1444–1452.
[16] Tahir HE, Xiaobo Z, Zhihua L, Jiyong S, Zhai X, Wang S, et al. (2017). Rapid prediction of phenolic compounds and antioxidant activity of Sudanese honey using Raman and Fourier transform infrared (FT-IR) spectroscopy. Food Chem., 226, 202–211.
[17] Li S, Shan Y, Zhu X, Zhang X, & Ling, G. (2012). Detection of honey adulteration by high fructose corn syrup and maltose syrup using Raman spectroscopy. J. Food Compos. Anal., 28, 69–74. https://doi.org/10.1016/j.jfca.2012.07.006
[18] Anguebes-Franseschi, F., Abatal, M., Pat, L., Flores, A., Córdova Quiroz, A. V., Ramírez-Elias, M. A., …  & Bassam, A. (2019). Raman spectroscopy and chemometric modeling to predict physical-chemical honey properties from Campeche, Mexico. Molecules, 24(22), 4091.
[19] Batsoulis, A. N., Siatis, N. G., Kimbaris, A. C., Alissandrakis, E. K., Pappas, C. S., & Tarantilis, P. A., et al. (2005). FT-Raman spectroscopic simultaneous determination of fructose and glucose in honey. J. Agric. Food Chem., 53(2), 207–210.
[20] Craig, A. P., Franca, A. S., & Irudayaraj, J. (2013). Surface-enhanced Raman spectroscopy applied to food safety. Annu. Rev. Food Sci. Technol., 4, 369–380.
[21] Iranian National Standardization Organization (INSO). (2020). Honey—Specifications and test methods. Tehran, Iran: Author.
[22] Li, S., Shan, Y., Zhu, X., Zhang, X., & Ling, G. (2012). Detection of honey adulteration by high fructose corn syrup and maltose syrup using Raman spectroscopy. J. Food Compos. Anal., 28(1), 69–74. https://doi.org/10.1016/j.jfca.2012.07.006
[23] White, J. W., Jr. (1969). Moisture in honey: Review of chemical and physical methods. J. Assoc. Off. Anal. Chem., 52(4), 729–737.
[24] Kek, S. P., Chin, N. L., Yusof, Y. A., Tan, S. W., & Chua, L. S. (2017). Classification of entomological origin of honey based on its physicochemical and antioxidant properties. Int. J. Food Prop., 20(sup3), S2723–S2738.
[25] Belay, A., Solomon, W., Bultossa, G., Adgaba, N., & Melaku, S. (2013). Physicochemical properties of the Harenna forest honey, Bale, Ethiopia. Food Chem., 141(4), 3386–3392. https://doi.org/10.1016/j.foodchem.2013.06.035
[26] Wu, X., Xu, B., Ma, R., Niu, Y., Gao, S., Liu, H., et al. (2022). Identification and quantification of adulterated honey by Raman spectroscopy combined with convolutional neural network and chemometrics. Spectrochim. Acta A Mol. Biomol. Spectrosc., 274, 121133.
[27] El Hajj, R., & Estephan, N. (2024). Advances in infrared spectroscopy and chemometrics for honey analysis: A comprehensive review. Crit. Rev. Food Sci. Nutr., 64, 1–14.
https://doi.org/10.1080/10408398.2024.2305036
[28] Hu, S., Li, H., Chen, C., Chen, C., Zhao, D., Dong, B., et al. (2022). Raman spectroscopy combined with machine learning algorithms to detect adulterated Suichang native honey. Sci. Rep., 12(1), 3456. https://doi.org/10.1038/s41598-022-07391-4
[29] Stöbener, A., Naefken, U., Kleber, J., & Liese, A. (2019). Determination of trace amounts with ATR FTIR spectroscopy and chemometrics: 5-(Hydroxymethyl)furfural in honey. Talanta, 204, 1–5. https://doi.org/10.1016/j.talanta.2019.06.004
[30] David, M., Berghian-Grosan, C., & Magdas, D. A. (2025). Honey differentiation using infrared and Raman spectroscopy analysis and the employment of machine-learning-based authentication models. Foods, 14(6), 1032.
[31] Song, X., She, S., Xin, M., Chen, L., Li, Y., Vander Heyden, Y., et al. (2020). Detection of adulteration in Chinese monofloral honey using ¹H nuclear magnetic resonance and chemometrics. J. Food Compos. Anal., 86, 103390.
[32] Magdas, D. A., Guyon, F., Berghian-Grosan, C., & Molnár, C. M. (2021). Challenges and a step forward in honey classification based on Raman spectroscopy. Food Control, 123, 107769. https://doi.org/10.1016/j.foodcont.2020.107769
 
دوره 13، شماره 2
بهمن 1404
صفحه 125-141
  • تاریخ دریافت: 02 مهر 1404
  • تاریخ بازنگری: 02 آبان 1404
  • تاریخ پذیرش: 25 آبان 1404
  • تاریخ اولین انتشار: 25 آبان 1404
  • تاریخ انتشار: 01 بهمن 1404