[1] Eddin, A. S., Ibrahim, S. A., & Tahergorabi, R. (2019). Egg quality and safety with an overview of edible coating application for egg preservation. Food Chem., 296, 29-39. https://doi.org/10.1016/j.foodchem.2019.05.182.
[2] Stadelman, W. J. (2017). Quality identification of shell eggs. In: Egg science and technology. CRC Press. 39-66.
[3] Soliman, A., & Safwat, A. M. (2020). Climate change impact on immune status and productivity of poultry as well as the quality of meat and egg products. In: Climate change impacts on agriculture and food security in Egypt: Land and water resources Smart farming livestock, fishery, and aquaculture. Cham: Springer International Publishing. 481-498. https://doi.org/10.1007/978-3-030-41629-4_20.
[4] Luo, W., Xue, H., Xiong, C., Li, J., Tu, Y., & Zhao, Y. (2020). Effects of temperature on quality of preserved eggs during storage. Poult. Sci., 99(6), 3144-3157. https://doi.org/10.1016/j.psj.2020.01.020.
[5] Feddern, V., Prá, M. C. D., Mores, R., Nicoloso, R. D. S., Coldebella, A., & Abreu, P. G. D. (2017). Egg quality assessment at different storage conditions, seasons and laying hen strains. Cienc. Agrotec., 41(3), 322-333.
https://doi.org/10.1590/1413-70542017413002317.
[6] Yimenu, S. M., Kim, J. Y., & Kim, B. S. (2017). Prediction of egg freshness during storage using electronic nose. Poult. Sci., 96(10), 3733-3746.
https://doi.org/10.3382/ps/pex193.
[7] Qi, L., Zhao, M. C., Li, Z., Shen, D. H., & Lu, J. (2020). Non-destructive testing technology for raw eggs freshness: A review. SN Appl. Sci., 2(6), 1113.
https://doi.org/10.1007/s42452-020-2906-x.
[8] Gholizadeh, S. (2016). A review of non-destructive testing methods of composite materials. Procedia Struct. Integr., 1, 50-57.
https://doi.org/10.1016/j.prostr.2016.02.008.
[9] Wang, Q., Yang, Z., Liu, C., Sun, R., & Yue, S. (2025). Research progress on non-destructive testing technology and equipment for poultry eggshell quality. Foods, 14(13), 2223. https://doi.org/10.3390/foods14132223.
[10] Sehirli, E., & Arslan, K. (2022). An application for the classification of egg quality and haugh unit based on characteristic egg features using machine learning models. Expert Syst. Appl., 205, 117692.
https://doi.org/10.1016/j.eswa.2022.117692.
[11] Cedro, T. M. M., Calixto, L. F. L., Gaspar, A., Curvello, F. A., & Hora, A. S. (2009). Internal quality of conventional and omega-3-enriched commercial eggs stored under different temperatures. Braz. J. Poult. Sci., 11, 181-185.
https://doi.org/10.1590/S1516-635X2009000300007.
[12] Moore, B. (2003). Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Trans. Autom. Control, 26(1), 17-32.
[13] Azadbakht, M., Torshizi, M. V., Ziaratban, A., & Ghajarjazi, E. (2016). Application of Artificial Neural Network (ANN) in predicting mechanical properties of canola stem under shear loading. Agric. Eng. Int.: CIGR J., 18(2), 413-425.
[14] Mahmoodi, M. J. M., Azadbakht, M., Asghari, A., & Dastar, B. (2020). Evaluation of the effect of UV light on the biochemical properties of egg internal contents using the response surface method. Innov. Food Technol., 7(3), 365-378.
https://doi.org/10.22104/jift.2020.3560.1856.
[15] Mahmoodi, M. J., Azadbakht, M., Asghari, A., & Dastar, B. (2022). Ultraviolet and infrared rays effects on some mechanical properties of oil-stained eggshells using response surface methods. Iran. Agric. Res., 40(1), 9-15.
https://doi.org/10.22099/IAR.2021.39441.1425.
[16] Mahmoodi, M. J., Azadbakht, M., Asghari, A., & Dastar, B. (2019). Investigating the amount of resistance to break the eggshell under the influence of a strong magnetic field (MRI). Poult. Sci. J., 7(2), 101-108.
https://doi.org/10.22069/psj.2019.16316.1412.
[17] Kamboj, U., Kaushal, N., & Jabeen, S. (2020, May). Near Infrared Spectroscopy as an efficient tool for the Qualitative and Quantitative Determination of Sugar Adulteration in Milk. J. Phys.: Conf. Ser., 1531(1), 012024.
https://doi.org/10.1088/1742-6596/1531/1/012024.